Темы
    Информатика(2560 задач)
---> 304 задач <---
Источники --> Личные олимпиады --> Всероссийская олимпиада школьников
    Муниципальный этап(80 задач)
    Окружная олимпиада(18 задач)
    Региональный этап(109 задач)
    Заключительный этап(97 задач)
Страница: 1 2 3 4 5 6 7 >> Отображать по:
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

Банк «Кисловодск» переходит на новый вид банковских карт. Для этого производятся одинаковые заготовки, на которых есть специальное место для идентификации клиента. Изначально на этом месте записывается кодовое число X. В банке с помощью специального прибора можно стирать некоторые цифры числа X. Оставшиеся цифры, будучи записанными подряд, должны образовывать номер счета клиента. Например, при X = 12013456789 номера счетов 5, 12, 17 или 12013456789 получить можно, а номера 22 или 71 получить нельзя.

Способ распределения номеров счетов в банке очень прост. Счетам присваиваются последовательно номера 1, 2, … Очевидно, что при таком способе в какой-то момент впервые найдется номер счета N, который нельзя будет получить из цифр X указанным выше способом. Руководство банка хочет знать значение N.

Напишите программу, которая находила бы N по заданному X.

Входные данные

Вводится натуральное число X без ведущих нулей (1 ≤ X < 101000)

Выходные данные

Выведите искомое N без ведущих нулей.

Примеры
Входные данные
239
Выходные данные
1
Входные данные
12013456789
Выходные данные
22
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes
Задано N чисел в закольцованном массиве. Разрешается менять два соседних числа, если они отличаются больше чем на 1. Необходимо упорядочить массив.

В витрине ювелирного магазина стоит манекен, на шею которого надето ожерелье. Оно состоит из N колечек, нанизанных на замкнутую нить. Все колечки имеют разные размеры. В зависимости от размера колечки пронумерованы числами от 1 до N, начиная с самого маленького и до самого большого. Колечки можно передвигать вдоль нити и протаскивать одно через другое, но только в том случае, если номера этих колечек отличаются более чем на единицу.

Продавец хочет упорядочить колечки так, чтобы они располагались по возрастанию номеров вдоль нити по часовой стрелке. Снимать ожерелье с манекена нельзя.

Требуется написать программу, которая по заданному начальному расположению колечек находит последовательность протаскиваний колечек одно через другое, приводящую исходное расположение колечек в желаемое.

Входные данные

Первая строка входных данных содержит  число N (2 ≤ N ≤ 50).

Во второй строке через пробел следуют N различных чисел от 1 до N номера колечек, расположенных вдоль нити по часовой стрелке.

Выходные данные

Ваша программа должна вывести описание процесса упорядочения.

В каждой строке выходных данных, кроме последней, должны быть записаны через пробел два числа, указывающие номера колечек, протаскиваемых друг через друга. В последней строке должен стоять ноль.

Количество выводимых строк  не должно превышать 50000.

Если требуемого упорядочения колечек достичь не удается,  программа должна вывести одно число –1

Примеры
Входные данные
4
3 1 2 4
Выходные данные
4 2
4 1
0
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

Пете поручили написать менеджер памяти для новой стандартной библиотеки языка H++. В распоряжении у менеджера находится массив из N последовательных ячеек памяти, пронумерованных от 1 до N. Задача менеджера — обрабатывать запросы приложений на выделение и освобождение памяти.

Запрос на выделение памяти имеет один параметр K. Такой запрос означает, что приложение просит выделить ему K последовательных ячеек памяти. Если в распоряжении менеджера есть хотя бы один свободный блок из K последовательных ячеек, то он обязан в ответ на запрос выделить такой блок. При этом непосредственно перед самой первой ячейкой памяти выделяемого блока не должно располагаться свободной ячейки памяти. После этого выделенные ячейки становятся занятыми и не могут быть использованы для выделения памяти, пока не будут освобождены. Если блока из K последовательных свободных ячеек нет, то запрос отклоняется.

Запрос на освобождение памяти имеет один параметр T. Такой запрос означает, что менеджер должен освободить память, выделенную ранее при обработке запроса с порядковым номером T. Запросы нумеруются, начиная с единицы. Гарантируется, что запрос с номером T — запрос на выделение, причем к нему еще не применялось освобождение памяти. Освобожденные ячейки могут снова быть использованы для выделения памяти. Если запрос с номером T был отклонен, то текущий запрос на освобождение памяти игнорируется.

Требуется написать менеджер памяти, удовлетворяющий приведенным критериям.

Входные данные

В первой строке входных данных задаются числа N и M — количество ячеек памяти и количество запросов, соответственно (1 ≤ N ≤ 231 – 1; 1 ≤ M ≤ 105). Каждая из следующих M строк содержит по одному числу: (i+1)-я строка входных данных (1 ≤ iM) содержит либо положительное число K, если i-й запрос — запрос на выделение с параметром K (1 ≤ KN), либо отрицательное число –T, если i-й запрос — запрос на освобождение с параметром T (1 ≤ T < i).

Выходные данные

Для каждого запроса на выделение памяти выведите результат обработки этого запроса: для успешных запросов выведите номер первой ячейки памяти в выделенном блоке, для отклоненных запросов выведите число –1. Результаты нужно выводить в порядке следования запросов во входных данных

Примеры
Входные данные
42 9
7
3
8
-2
6
5
-5
9
4
Выходные данные
1
8
11
19
25
30
19
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

Вновь открытое казино предложило оригинальную игру.

В начале игры крупье выставляет в ряд несколько фишек разных цветов. Кроме того, он объявляет, какие последовательности фишек игрок может забирать себе в процессе игры. Далее игрок забирает себе одну из заранее объявленных последовательностей фишек, расположенных подряд. После этого крупье сдвигает оставшиеся фишки, убирая разрыв. Затем игрок снова забирает себе одну из объявленных последовательностей и так далее. Игра продолжается до тех пор, пока игрок может забирать фишки.

Рассмотрим пример. Пусть на столе выставлен ряд фишек rrrgggbbb, и крупье объявил последовательности rg и gb. Игрок, например, может забрать фишки rg, лежащие на третьем и четвёртом местах слева. После этого крупье сдвинет фишки, и на столе получится ряд rrggbbb. Ещё дважды забрав фишки rg, игрок добьётся того, что на столе останутся фишки bbbи игра закончится, так как игроку больше нечего забрать со стола. Игрок мог бы действовать и по-другому — на втором и третьем ходах забрать не последовательности rg, а последовательности gb. Тогда на столе остались бы фишки rrb. Аналогично, игрок мог бы добиться того, чтобы в конце остались ряды rrr или rbb.

После окончания игры полученные фишки игрок меняет на деньги. Цена фишки зависит от её цвета.

Требуется написать программу, определяющую максимальную сумму, которую сможет получить игрок.

Входные данные

В первой строке входных данных содержится число K (1 ≤ K ≤ 26) — количество цветов фишек. Каждая из следующих K строк начинается со строчной латинской буквы, обозначающей цвет. Далее в той же строке через пробел следует целое число Xi (1 ≤ Xi ≤ 150, i = 1..K) — цена фишки соответствующего цвета.

В (K+2)-ой строке описан ряд фишек, лежащих на столе в начале игры. Ряд задаетсяL строчными латинскими буквами (1 ≤ L ≤ 150), которые обозначают цвета фишек ряда.

В следующей строке содержится число N(1 ≤ N ≤ 150) — количество последовательностей, которые были объявлены крупье. В следующих N строках записаны эти последовательности. Гарантируется, что сумма длин этих N строк не превосходит 150 символов, и все они непустые.

Выходные данные

Выведите единственное целое число — максимальную сумму денег, которую может получить игрок.

Примеры
Входные данные
3
v 3
l 1
u 2
luvu
3
luv
vul
uuu
Выходные данные
6
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Саша считает красивыми числа, десятичная запись которых не содержит других цифр, кроме 0 и k (1 k 9). Например, если k = 2, то такими числами будут 2, 20, 22, 2002 и т.п. Остальные числа Саше не нравятся, поэтому он представляет их в виде суммы красивых чисел. Например, если k = 3, то число 69 можно представить так: 69 = 33 + 30 + 3 + 3.

Однако, не любое натуральное число можно разложить в сумму красивых целых чисел. Например, при k = 5 число 6 нельзя представить в таком виде. Но если использовать красивые десятичные дроби, то это можно сделать: 6 = 5.5 + 0.5.

Недавно Саша изучил периодические десятичные дроби и начал использовать и их в качестве слагаемых. Например, если k = 3, то число 43 можно разложить так: 43 = 33.(3) + 3.(3) + 3 + 3.(3).

Оказывается, любое натуральное число можно представить в виде суммы положительных красивых чисел. Но такое разложение не единственно — например, число 69 можно также представить и как 69 = 33 + 33 + 3. Сашу заинтересовало, какое минимальное количество слагаемых требуется для представления числа n в виде суммы красивых чисел.

Требуется написать программу, которая для заданных чисел n и k находит разложение числа n в сумму положительных красивых чисел с минимальным количеством слагаемых.

Формат входных данных

На вход программы поступают два натуральных числа n и k (1 ≤ n ≤ 109; 1≤ k ≤ 9).

Входные данные

На вход программы поступают два натуральных числа n и k (1 ≤ n ≤ 109; 1≤ k ≤ 9).

Выходные данные

Выведите разложение числа n в сумму положительных чисел, содержащих только цифры 0 и k, количество слагаемых в котором минимально. Разложение должно быть представлено в виде:

n=a1+a2+...+am

Слагаемые a1, a2, ..., am должны быть выведены без ведущих нулей, без лишних нулей в конце дробной части. Запись каждого слагаемого должна быть такой, что длины периода и предпериода дробной части имеют минимально возможную длину. Например, неправильно выведены числа: 07.7; 2.20; 55.5(5); 0.(66); 7.(0); 7. ; .5; 0.33(03). Их следует выводить так: 7.7; 2.2; 55.(5); 0.(6); 7; 7; 0.5; 0.3(30).

Предпериод и период каждого из выведенных чисел должны состоять не более чем из 100 цифр. Гарантируется, что хотя бы одно такое решение существует. Если искомых решений несколько, выведите любое. Порядок слагаемых может быть произвольным.

Выходные данные не должны содержать пробелов.

Примеры
Входные данные
10 1
Выходные данные
1
Входные данные
42 6
Выходные данные
7
Входные данные
57 1
Выходные данные
7

Страница: 1 2 3 4 5 6 7 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест