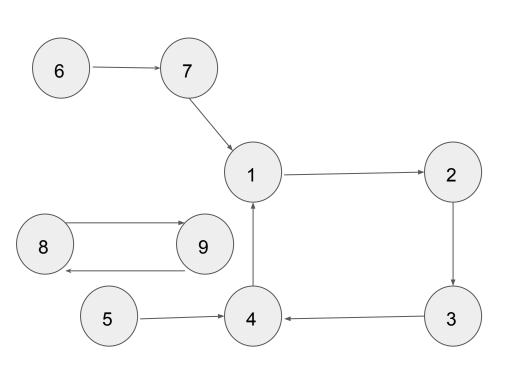

LCA

Преподаватель Макоян Артем Каренович

Время входа и выхода



LCA

Ica(6, 8) = 2 Ica(5, 7) = 1 Ica(2, 7) = 1 Ica(2, 6) = 2 Ica(8, 2) = 2 Ica(3, 8) = 1

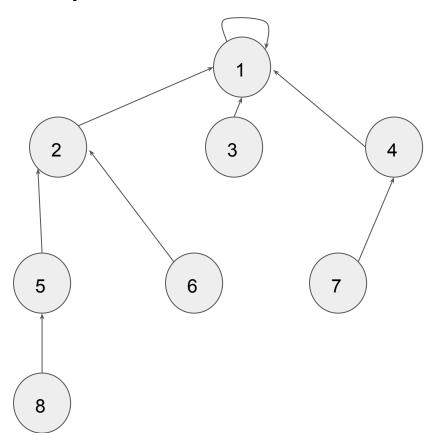
Бинарные подъемы

go(v, c) = где мы окажемся, если пройдем из v на c ходов

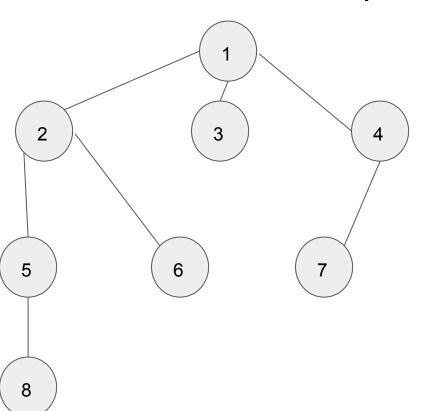
$$go(6, 1) = 7$$

 $go(6, 4) = 3$
 $go(8, 2) = 8$
 $go(9, 100) = 9$
 $go(5, 301) = 4$

Бинарные подъемы


Посчитаем все $go(v, 2^c)$. Воспользуемся динамикой. База: c = 0 -> 1 строка таблицы это переход по одной стрелке Чтобы пройти 2^c вперед - пройдем сначала $2^c(c-1)$, а потом еще раз $2^c(c-1) => go(v, 2^c) = go(go(v, 2^c(c-1)), 2^c(c-1))$ - пересчитываем через предыдущую строку

5 6	пере
1 2	
4 3	


C/V	1	2	3	4	5	6
1	2	3	4	1	6	1
2	3	4	1	2	1	2
4	1	2	3	4	3	4
8	1	2	3	4	3	4
16	1	2	3	4	3	4

То есть вместо того, чтобы прыгнуть на k, мы сначала прыгаем на 2^c1, потом на 2^c1... потом на 2^c1... потом на 2^c1...

Бинарные подъемы и LCA

Эйлеров обход дерева

Эйлеров обход дерева: 1->2->5->8->5->2->6->2->1->3->1->4->1

first[u] - первое вхождение вершины и в массив эйлерова обхода

- Все вершины от first[u] до first[v] лежат в поддереве lca(u, v)
- lca(u, v) встречается на отрезке от first[u]
 до first[v]

Тогда lca(u, v) - вершина с минимальной высотой на отрезке от first[u] до first[v]

Фарах-Колтон и Бендер

- С помощью Эйлерова обхода сводим Іса к задаче RMQ, где каждые 2 соседних элемента отличаются на +-1
- Разобьем массив на блоки по $K = \frac{1}{2} \log N$ и предподсчитаем минимум в каждом блоке и построим sparse table на блоках за $N / K * \log (N / K) = O(N)$, так как $K = \frac{1}{2} \log N$
- При запросе "min I, r", с помощью sparse table можем найти минимум из из всех блоков **полностью** входящих в [I, r]
- Осталось научиться считать минимум в "куске" блока
- Если из всех элементов блока вычесть первый элемент, то блок будет характеризоваться последовательностью 1 и -1 длины k 1 (при вычитании индексс минимума не меняется)
- Тогда переберем всевозможные блоки и подотрезки внутри них и предподсчитаем в них минимум - O(2^(K-1) * K^3) = O(sqrt(N) * log^3 N)

Сравнение результатов

LCA	Бинарные подъемы	Эйлеров обход. ДО.	Эйлеров обход. Разреженные таблицы.	Фарах-Колтон и Бендер
Построение:	O(n log n)	O(n)	O(n log n)	O(n)
На запрос:	O(log n)	O(log n)	O(1)	O(1)
Память:	O(n log n)	O(n)	O(n log n)	O(n)