Мосты(2 задач)
Применение обхода в глубину(3 задач)
Топологическая сортировка(2 задач)
Точки сочленения(1 задач)
Карту местности условно разбили на квадраты, и посчитали среднюю высоту над уровнем моря для каждого квадрата.
Когда идет дождь, вода равномерно выпадает на все квадраты. Если один из четырех соседних с данным квадратом квадратов имеет меньшую высоту над уровнем моря, то вода с текущего квадрата стекает туда (и, если есть возможность, то дальше), если же все соседние квадраты имеют большую высоту, то вода скапливается в этом квадрате.
Разрешается в некоторых квадратах построить водостоки. Когда на каком-то квадрате строят водосток, то вся вода, которая раньше скапливалась в этом квадрате, будет утекать в водосток.
Если есть группа квадратов, имеющих одинаковую высоту и образующих связную область, то если хотя бы рядом с одним из этих квадратов есть квадрат, имеющий меньшую высоту, то вся вода утекает туда, если же такого квадрата нет, то вода стоит во всех этих квадратах. При этом достаточно построить водосток в любом из этих квадратов, и вся вода с них будет утекать в этот водосток.
Требуется определить, какое минимальное количество водостоков нужно построить, чтобы после дождя вся вода утекала в водостоки.
Во входном файле записаны сначала числа N и M, задающие размеры карты — натуральные числа, не превышающие 100. Далее идет N строк, по M чисел в каждой, задающих высоту квадратов карты над уровнем моря. Высота задается натуральным числом, не превышающим 10000. Считается, что квадраты, расположенные за пределами карты, имеют высоту 10001 (то есть вода никогда не утекает за пределы карты).
В выходной файл выведите минимальное количество водостоков, которое необходимо построить.
4 4 1 2 4 1 2 4 4 4 1 4 3 2 1 2 3 2
4
Вася и Петя играют в увлекательную игру. Вася выписал подряд числа от 1 до N. А Петя выписал P пар чисел (Ai, Bi).
Теперь Вася преобразует имеющуюся последовательность чисел - он меняет местами числа в этой последовательности. Если некоторая пара чисел (Ai, Bi) выписана Петей, то Вася имеет право в любой момент взять числа из последовательности, стоящие на местах Ai и Bi и поменять их местами.
Например, если N=5. Тогда изначально Васей выписана последовательность
1 2 3 4 5
Пусть Петя написал две пары чисел: (1,2) и (2,5). Тогда Вася в любой момент может менять числа, стоящие на 1 и 2 местах, или же числа, стоящие на 2 и 5 местах.
Например, он может последовательно получить следующие последовательности:
2 1 3 4 5 (поменяв числа на 1 и 2 местах)
2 5 3 4 1 (поменяв числа на 2 и 5 местах)
5 2 3 4 1 (поменяв числа на 1 и 2 местах).
Пете не показываются промежуточные последовательности, а выписывается лишь полученная на последнем шаге.
От Пети требуется проверить, мог ли Вася получить такую последовательность не нарушая правил игры, и если мог, то указать, в результате какой последовательности обменов (при этом не требуется, чтобы число обменов было минимально возможным).
Напишите программу, которая поможет Пете справиться с этой задачей.
Сначала записано число N (1≤N≤100) – количество чисел в последовательности. Дальше идет N чисел – последовательность, полученная Васей (в последовательности каждое из чисел от 1 до N встречается ровно один раз).
Далее идет число P (0≤P≤10000) – количество пар чисел, выписанных Петей. Далее записано P пар чисел (каждое число пары – из диапазона от 1 до N).
В первую строку выходного файла выведите сообщение YES (если такая последовательность могла быть честно получена Васей) и NO (если такую последовательность Вася не мог получить, не нарушая правил игры).
В случае, если такая последовательность могла быть получена, далее выведите способ ее получения (если вариантов несколько, выведите любой из них). Сначала выведите число K – количество операций обмена (оно не должно превышать 100000), а затем K пар чисел, задающих номера мест, на которых стоят обмениваемые элементы (числа в паре могут быть выданы в любом порядке). Гарантируется, что если решение существует, то существует решение с числом обменов, не превышающим 100000.
5 5 2 3 4 1 2 1 2 2 5
YES 3 1 2 2 5 1 2
5 2 3 4 5 1 2 1 2 2 5
NO
Петя с Васей решили поздравить всех своих одноклассниц с Международным Женским Днем. Важной частью любого праздника являются открытки. Купив их достаточно, друзья сели писать пожелания. Подписанные открытки они складывали на специальный стол, расчерченный в квадратную клетку параллельно краям стола так, что длина и ширина его составляли N и M клеток соответственно. По удивительному совпадению каждая открытка была размером точь-в-точь с две клетки стола. Петя настоял на том, чтобы класть подписанные поздравления строго по линиям сетки — горизонтально или вертикально, накрывая одной открыткой ровно две клетки.
По окончанию работы оказалось, что каждая клетка стола накрыта ровно двумя открытками — крайне неудобное расположение для того, чтобы их дарить. К счастью, рядом был еще один такой же стол, поэтому они решили переложить на него половину открыток так, чтобы остальные, оставаясь на своем месте, образовывали ровно один слой — не накладывались друг на друга и полностью покрывали бы стол. Чтобы не нарушать порядка, открытки надо доставать по одной, извлекать очередную разрешается только в случае, если хотя бы одна из ее половинок лежит сверху (то есть эту половинку не накрывает другая открытка).
Поскольку одноклассниц у Пети и Васи довольно много, они обратились за помощью к Вам. Напишите программу, которая подскажет, какие открытки извлекать и в какой последовательности, либо определит, что это невозможно.
В первой строке входного файла записаны два целых числа N и M (1 ≤ N, M ≤ 700) — длина и ширина стола. Гарантируется, что хотя бы одно из N, M четное. Будем считать, что все открытки занумерованы числами от 1 до NM. Следующие 2N строк содержат по M чисел: первые N строк описывают нижний слой, следующие N строк — верхний слой. Число k в i-й строке j-м столбце нижнего или верхнего слоя означает наличие на этой позиции одной из половинок открытки номер k.
Гарантируется, что входные данные корректны, то есть что каждое число 1 до NM встречается ровно два раза, и эти вхождения находятся на соседних позициях, при этом они могут находиться как в одном слое, так и в разных. Кроме того, если две открытки покрывают одни и те же клетки, то одна из них находится обеими половинками снизу, а другая — сверху.
В выходной файл запишите единственное слово NO, если не существует способа извлечь половину открыток нужным образом. В противном случае в первую строку выведите YES, во вторую — последовательность из NM/2 номеров открыток, которые надо достать, в правильном порядке. У каждой из них на момент извлечения хотя бы одна из половинок должна находиться сверху. Если искомых последовательностей несколько, выведите любую из них.
Частичные ограничения
Первая группа состоит из тестов, в которых произведение NM ≤ 24.
Вторая группа состоит из тестов, в которых N, M ≤ 100.
2 2 1 1 3 2 4 2 4 3
YES 4 2
2 3 1 1 4 2 3 4 2 6 5 3 6 5
YES 2 6 5
В Тридесятом государстве есть N городов, все города пронумерованы числами от 1 до \(N\). Между городами построены дороги — каждая дорога соединяет между собой два города.
Царь Тридесятого государства уволил министра транспорта за то, что дороги были в очень плохом состоянии. Новый министр транспорта, чтобы не повторить судьбу своего предшественника, решил, что он будет лично контролировать состояние дорог. А именно он решил, что раз в год он лично будет объезжать все дороги.
При этом министр транспорта очень ценит свое время, и считает, что если в процессе объезда ему придется дважды проехать по какой-то дороге, то когда он будет ехать по этой дороге второй раз, ему уже не придется проверять ее состояние, и это будет недопустимой тратой времени.
Министр транспорта живет в городе номер 1, и поэтому хочет, чтобы его путешествие начиналось в этом городе. Заканчиваться путешествие должно в городе номер K, где каждый год будет проходить всегосударственное совещание по вопросам планирования ремонта дорог на следующий год.
Определите, какое минимальное количество дорог нужно построить в Тридесятом царстве в дополнение к уже существующим, чтобы можно было выполнить все требования Министра транспорта, а именно, чтобы он мог, выехав из города номер 1, проехать по каждой дороге ровно 1 раз и в итоге приехать в город номер \(K\).
Вводится число \(N\) — количество городов в Тридесятом царстве (1≤\(N\)≤100). Далее вводится число \(M\) — количество дорог в Тридесятом царстве (1≤\(M\)≤10000). Далее идет \(M\) пар чисел — каждая пара задает номера городов, соединяемых соответствующей дорогой. Все дороги двухсторонние, т.е. по дороге можно ездить в любую сторону. Между некоторыми городами может быть несколько дорог. Возможны дороги из города в него же. В последней строке входных данных находится число \(K\) — номер города, где заканчивается маршрут министра (1≤\(K\)≤\(N\)).
Выведите минимальное количество дорог, которое необходимо построить в Тридесятом царстве. Затем выведите, какие именно дороги надо построить: для каждой дороги выведите, какие города она должна соединять.
4 2 2 3 3 4 1
2 1 2 4 1
6 5 1 2 2 3 3 4 4 2 6 6 1
2 1 6 2 6
2 4 1 2 1 2 1 1 1 2 2
0
Рассмотрим расписание движения электричек на некоторой железнодорожной линии. Нас будут интересовать только электрички, идущие в одном направлении.
Каждая электричка отправляется с некоторой станции и следует до некоторой другой станции со всеми остановками. При этом средняя маршрутная скорость у каждой электрички своя (будем считать, что весь маршрут электричка проходит с этой скоростью, временем стоянки на станциях пренебрежем). Поскольку на участке только один путь в данном направлении — электрички в процессе следования друг друга не обгоняют.
Требуется выпустить книжку-расписание электричек. Обычно такая книжка представляет собой таблицу, где в первом столбце перечислены все станции, а каждый следующий столбец соответствует электричке: если электричка проходит через станцию, то в соответствующей клетке указывается время прохождения этой электрички через эту станцию, и прочерк, если электричка через эту станцию не проходит.
Естественно, что в книжке-расписании нужно расположить электрички так, чтобы они были указаны в хронологическом порядке. А именно, если две электрички имеют хотя бы одну общую станцию (даже если она является начальной станцией для одной, и конечной — для другой электрички), электрички в расписании должны идти в том порядке, в каком они проходят через эту станцию (поскольку электрички не обгоняют друг друга, то это же будет справедливо для всех общих станций этих двух электричек). Если же электрички не имеют ни одной общей станции, то они могут быть указаны в любом порядке.
По данному расписанию движения электричек определите порядок, в котором электрички должны идти в книжке—расписании.
Сначала вводится целое число N (1 ≤ N ≤ 1000) — количество электричек. Далее идёт описание электричек: каждая электричка задается четырьмя числами Ai, Bi, Ci, Di (0 ≤ Ai < Bi ≤ 106, 1 ≤ Ci ≤ 100, 0 ≤ Di ≤ 10000), которые обозначают, что данная электричка отправляется со станции «Ai-й километр» и следует до станции «Bi-й километр». Электричка отправляется с начальной станции в момент Ci. Один километр электричка проезжает за Di секунд.
Гарантируется, что расписание можно составить корректно, в частности, никакая электричка не обгоняет другую.
Выведите последовательность из N номеров от 1 до N – номера электричек в том порядке, в котором они должны идти в книжке-расписании. Если возможных ответов несколько, выведите любой.
Комментарий к примеру тестов
Ответ 2 3 1 также будет верным.
3 1 10 3 4 3 5 3 4 10 11 10 1
3 2 1