Темы --> Информатика
    Язык программирования(952 задач)
    Алгоритмы(1657 задач)
    Структуры данных(279 задач)
    Интерактивные задачи(17 задач)
    Другое(54 задач)
---> 62 задач <---
    2004(6 задач)
    2005(6 задач)
    2006(6 задач)
    2007(6 задач)
    2008(6 задач)
    2009(6 задач)
    2010(6 задач)
    2011(8 задач)
    2012(8 задач)
    2013(8 задач)
    2014(7 задач)
    2015(8 задач)
    2016(8 задач)
    2017(8 задач)
Страница: << 7 8 9 10 11 12 13 >> Отображать по:

История Татаро-монгольского ханства богата на правителей. Каждый из N правителей принадлежал к одной из двух династий, причём власть часто переходила от одной династии к другой. Каждое восхождение правителя на престол отмечалось праздником, проводимым 26 марта. В летописях зафиксированы годы проведения этих праздников, причем известно, что правители первой династии устраивали для народа праздник кумыса, а второй — праздник мёда.

На конференции по истории Татаро-монгольского ханства каждый из S учёных предложил свою версию толкования летописи. А именно, i-й историк утверждал, что от каждого праздника кумыса до следующего праздника кумыса проходило не менее KLi лет, но не более KRi лет, в то время как от каждого праздника мёда до следующего праздника мёда проходило не менее MLi лет, но не более MRi лет.

Каждой предложенной версии может соответствовать несколько распределений правителей по династиям. Ученые договорились считать показателем сомнительности распределения число переходов власти к представителю той же самой династии.

Требуется написать программу, которая найдёт распределение, соответствующее хотя бы одной из версий и имеющее наименьший показатель сомнительности, а также версию, которой оно соответствует.

Входные данные

В первой строке входного файла записано число N (2 ≤ N ≤ 200 000) — количество праздников в летописи. Следующая строка содержит целые числа X1, X2, ..., XN (1 ≤ X1 ≤ X2 ≤ ... ≤ XN ≤ 109) — годы проведения праздников.

В третьей строке записано число учёных S (1 ≤ S ≤ 50). В каждой из последующих S строк записаны четыре натуральных числа KLi, KRi, MLi, MRi (1 ≤ KLi ≤ KRi ≤ 109), (1 ≤ MLi ≤ MRi ≤ 109).

Выходные данные

Первая строка выходного файла должна содержать числа P и Q, где P — номер учёного, версии которого соответствует распределение с наименьшим показателем сомнительности, а Q — показатель сомнительности этого распределения.

Вторая строка должна состоять из N цифр 1 и 2, записанных без пробелов, означающих приход к власти представителя первой или второй династии соответственно. Если существует несколько решений с наименьшим показателем сомнительности Q, выведите любое из них.

В случае, если ни в одной из версий учёных не существует способа распределения периодов правления между династиями так, чтобы не нарушались ограничения на промежутки времени между праздниками, выходной файл должен содержать единственное число 0.

Примечание

Данная задача содержит шесть подзадач. Для оценки каждой подзадачи используется своя группа тестов. Баллы за подзадачу начисляются только в том случае, если все тесты из этой группы пройдены.

  1. Тесты из условия. Подзадача оценивается в 0 баллов.

  2. 2 ≤ N ≤ 15, 1 ≤ S ≤ 10. Подзадача оценивается в 20 баллов.

  3. 2 ≤ N ≤ 2000, 1 ≤ S ≤ 50, N × S ≤ 2000. Подзадача оценивается в 20 баллов.

  4. 2 ≤ N ≤ 10 000, 1 ≤ S ≤ 50, N × S ≤ 10 000. Подзадача оценивается в 20 баллов.

  5. 2 ≤ N ≤ 200 000, 1 ≤ S ≤ 50, N × S ≤ 200 000. Подзадача оценивается в 20 баллов.

  6. 2 ≤ N ≤ 200 000, 1 ≤ S ≤ 50. Подзадача оценивается в 20 баллов.

Примеры
Входные данные
3
1 2 3
1
1 1 1 1
Выходные данные
1 1
211
Входные данные
4
1 6 9 13
2
1 2 2 3
6 7 3 3
Выходные данные
0
Входные данные
5
3 6 8 9 10
2
2 3 1 1
1 4 1 10
Выходные данные
2 0
21212
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes

В рамках Чемпионата Урала планируется проведение турнира стратегий по игре «Морской бой 1D».

Игра проходит на поле, которое представляет собой прямоугольник размером 1 × N клеток. На поле расставляются T кораблей, каждый из которых имеет вид прямоугольника размером 1 × K клеток. Расстановка кораблей на поле является допустимой, если различные корабли не имеют общих клеток и разделены хотя бы одной пустой клеткой. Игровая программа осуществляет выстрелы в клетки поля, а сервер сообщает, является ли выстрел промахом или попаданием в корабль.

В процессе игры про некоторые клетки становится известно, что при любой допустимой расстановке кораблей они принадлежат какому-либо из кораблей. Назовём такие клетки заведомо занятыми.

Игра заканчивается после первого попадания в корабль. Сервер пытается добиться того, чтобы игра продолжалась как можно дольше. Для этого он не фиксирует расстановку кораблей в начале игры, а рассматривает все возможные допустимые расстановки и сообщает о попадании, только если клетка, в которую осуществляется выстрел, является заведомо занятой.

Требуется написать программу, исполняющую роль сервера для этой игры. Сервер сначала загружает параметры игры, а затем взаимодействует с игровой программой, сообщая после каждого выстрела информацию о промахе или попадании, а также количество заведомо занятых клеток.

Входные данные

Задача является интерактивной. После каждого вывода требуется сбросить буфер вывода.

Роль игровой программы исполняет программа жюри. Программа-решение исполняет роль сервера.

Первая строка стандартного ввода программы-решения содержит параметры игры — три числа: N — размер игрового поля, T — число кораблей и K — длина каждого корабля (1 ≤ N ≤ 100 000, 1 ≤ T, 1 ≤ K). Гарантируется, что на поле длины N можно по описанным правилам разместить T кораблей длины K.

После считывания параметров игры программа-решение должна определить и вывести в стандартный поток вывода количество заведомо занятых клеток.

Затем начинается игра. Программа-решение должна последовательно считывать ходы игровой программы из стандартного потока ввода и обрабатывать их следующим образом:

  1. Считать из стандартного потока ввода одно число q — номер клетки, в которую игровая программа осуществляет выстрел (1 ≤ q ≤ N). Игровая программа никогда не делает два выстрела в одну и ту же клетку.
  2. Если клетка q является заведомо занятой, вывести в стандартный поток вывода число 1 и завершить работу.
  3. Если клетка q не является заведомо занятой, вывести в стандартный поток два числа, разделенных пробелом: 0 и количество заведомо занятых клеток после этого выстрела. После этого программа-решение переходит к пункту 1 и продолжает взаимодействие с игровой программой.

Выходные данные

Примечание

Данная задача содержит четыре подзадачи. Для оценки каждой подзадачи используется своя группа тестов. Баллы за подзадачу начисляются только в том случае, если все тесты из этой группы успешно пройдены.

  1. Тесты из условия. Подзадача оценивается в 0 баллов.
  2. N ≤ 15. Подзадача оценивается в 30 баллов.
  3. N ≤ 3000. Подзадача оценивается в 30 баллов.
  4. N ≤ 100 000. Подзадача оценивается в 40 баллов.
Примеры
Входные данные
8 2 3
4
1
Выходные данные
4
0 5
1
ограничение по времени на тест
3.0 second;
ограничение по памяти на тест
256 megabytes
В развлекательном центре \(Е\)-города был установлен игровой автомат нового поколения. В автомат можно бросить монету и следить за её продвижением сверху вниз по разветвляющемуся лабиринту из трубок. В лабиринте есть n узлов, которые пронумерованы числами от 1 до \(n\). При бросании монета попадает в первый узел. Каждый узел лабиринта, кроме первого, имеет одну входящую сверху трубку, по которой монета может в него попасть. Из каждого узла выходит не более двух трубок, идущих вниз, одна из которых ведет налево, а другая — направо. Каждая трубка имеет некоторую ширину. Монета проваливается в более широкую трубку, а в случае равенства ширины трубок — в левую.

После прохождения монеты по трубке ширина этой трубки уменьшается на 1. Монета не может пройти по трубке ширины 0. Если монета достигла узла, из которого она не может дальше двигаться вниз, автомат останавливается и ждёт, когда в него бросят следующую монету

Изначально в каждом узле лабиринта находится по игрушке. Когда монета попадает в узел первый раз, игрушка, находящаяся в этом узле, достаётся игроку, бросившему эту монету.

Панкрату понравилась игрушка, которая находится в узле с номером \(v\).

Требуется написать программу, которая определяет, сколько монет должен бросить в автомат Панкрат, чтобы получить игрушку из узла \(v\).

Формат входного файла

В первой строке входного файла задано число \(n\) — количество узлов в лабиринте. В последующих n строках заданы описания всех узлов, в \(k\)-й из этих строк описан узел с номером \(k\).

Описание k-го узла состоит из четырех целых чисел: \(a_k\), \(u_k\), \(b_k\), \(w_k\). Если из \(k\)-го узла выходит левая трубка, то \(a_k\) — номер узла, в который она ведет (\(k\) < \(a_k\) <= \(n\)), а \(u_k\) — её ширина. Если левой трубки нет, то \(a_k\) = \(u_k\) = 0. Если из \(k\)-го узла выходит правая трубка, то \(b_k\) — номер узла, в который она ведет (\(k\) < \(b_k\) <= \(n\)), а \(w_k\) — её ширина. Если правой трубки нет, то \(b_k\) = \(w_k\) = 0.

В последней строке задано целое число \(v\) (1 <= \(v\) <= \(n\)) — номер узла, в котором находится игрушка, понравившаяся Панкрату.

Гарантируется, что во все узлы, кроме первого, входит ровно одна трубка

Формат выходного файла

Выходной файл должен содержать одно число — количество монет, которое необходимо бросить в автомат Панкрату, чтобы получить игрушку, которая находится в узле \(v\). Если получить выбранную игрушку невозможно, выведите число −1.

Система оценки

Данная задача содержит две подзадачи. Для оценки каждой подзадачи используется своя группа тестов. Баллы за подзадачу начисляются только в том случае, если все тесты из этой группы пройдены.

Подзадача 1

1 <= \(n\) <= 100

1 <= \(u_k\); \(w_k\) <= 300

Подзадача оценивается в 50 баллов.

Подзадача 2

1 <= \(n\) <= \(10^5\)

1 <= \(u_k\); \(w_k\) <= \(10^9\)

Подзадача оценивается в 50 баллов.

Пояснения к примеру

В первом примере первая монета пройдет лабиринт по следующему пути, и игрок получит игрушки из вершин 1, 3 и 4:

Вторая монета пройдет лабиринт по следующему пути, и игрок получит игрушки из вершин 2 и 6:

Третья монета пройдет лабиринт по следующему пути, и игрок получит игрушки из вершин 5 и 7:

Примеры
Входные данные
7
2 1 3 2
0 0 6 3
4 1 5 1
0 0 0 0
7 2 0 0
0 0 0 0
0 0 0 0
5
Выходные данные
3
Входные данные
4
0 0 2 1
4 1 3 1
0 0 0 0
0 0 0 0
3
Выходные данные
-1
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
512 megabytes
Дано изображение дерева из \(n\) вершин на прямоугольной сетке. Каждое ребро — либо вертикальный, либо горизонтальный отрезок длины \(1\) Дано \(q\) запросов, каждый имеет вид "сколько компонент связности образуется при вырезании данного прямоугольного фрагмента"

Со стародавних времён в поморских деревнях рукодельницы вышивали жемчугом на прямоугольных полотенцах, состоящих из одинаковых клеток. Вышивка начиналась с пришивания жемчужины к полотенцу в центре одной из клеток. Чтобы пришить новую жемчужину, рукодельница делала стежок из клетки, уже содержащей жемчужину, в соседнюю с ней по горизонтали или вертикали свободную клетку. Новая жемчужина пришивалась в центре клетки на конце стежка. Этот процесс повторялся, пока не заканчивались жемчужины.

Одно из таких праздничных полотенец находится в музее. К сожалению, некоторые части узора были утеряны, но описание полотенца сохранилось. Дирекция музея планирует восстановить один из прямоугольных фрагментов полотенца, но не ещё не решила какой именно. Затраты на восстановление фрагмента зависят от количества связных частей узора, попавших на этот фрагмент. Часть узора считается связной, если от любой её жемчужины можно по стежкам перейти к любой другой её жемчужине, не выходя за границы фрагмента. Дирекция всегда относит любые две жемчужины, между которыми можно перейти по стежкам, к одной и той же связной части узора.

Требуется написать программу, вычисляющую количество связных частей узора для каждого из заданных фрагментов.

Входные данные

Первая строка входных данных содержит два целых числа a и b — размеры полотенца в клетках по горизонтали и вертикали.

Вторая строка содержит два числа \(n\) и \(q\) — количество жемчужин в узоре и количество фрагментов соответственно.

Следующие (\(n − 1\)) строк содержат описания стежков. Каждый стежок имеет один из следующих видов:

• \(h \times y\) означает, что клетки с координатами \((x, y)\) и \((x + 1, y)\) содержат жемчужины, соединённые горизонтальным стежком (\(1 \le x \le a − 1; 1 \le y \le b\));

• \(v \times y\) означает, что клетки с координатами \((x, y)\) и \((x, y + 1)\) содержат жемчужины, соединённые вертикальным стежком (\(1 \le x \le a; 1 \le y \le b − 1\)).

Так как неизвестно в каком порядке рукодельница наносила стежки, их описания следуют в произвольном порядке. При этом гарантируется, что узор был получен в результате процесса, описанного в условии задачи.

Следующие \(q\) строк описывают фрагменты. Каждое описание содержит четыре целых числа \(x_1\), \(y_1\), \(x_2\) и \(y_2\) — координаты левой нижней и правой верхней клетки фрагмента (\(1 \le x_1 \le x_2 \le a; 1 \le y_1 \le y_2 \le b\)).

Выходные данные

Выходные данные должны содержать \(q\) строк, где \(i\)-я строка содержит количество связных частей узора в \(i\)-м фрагменте.

Таблица системы оценивания

Замечание

Пояснение к тесту из условия

Примеры
Входные данные
4 3
8 4
v 1 1
h 1 1
h 2 1
v 2 1
v 2 2
h 1 3
h 3 1
1 1 4 3
3 2 4 3
3 1 3 1
1 2 3 3
Выходные данные
1
0
1
2
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
512 megabytes

Школьники готовятся к участию в соревновании по программированию квадрокоптеров. Квадрокоптер, который используется в соревновании, может выполнять две команды: подняться вверх на 1 метр и опуститься вниз на 1 метр. Команда подъёма обозначается символом «(», а команда спуска — символом «)».

Программа для квадрокоптера представляет собой последовательность команд. Программа считается корректной, если, начав её исполнение на уровне земли и выполнив последовательно все команды, квадрокоптер снова оказывается на уровне земли. При этом в процессе выполнения программы квадрокоптер не должен пытаться опуститься ниже уровня земли.

Например, следующие программы являются корректными: «()(())», «((()))». Программа«(((» не является корректной, поскольку квадрокоптер завершает ее выполнение на высоте 3 метра над уровнем земли, программа «())(» также не является корректной, поскольку при выполнении третьей команды квадрокоптер пытается опуститься ниже уровня земли.

Участник соревнования написал корректную программу для квадрокоптера, состоящую из n команд, пронумерованных от 1 до n. Он загрузил её в память квадрокоптера для демонстрации во время соревнования. К сожалению, после загрузки программы в память квадрокоптера участник случайно удалил её на своём компьютере, а квадрокоптер не позволяет выгрузить программу из своей памяти.

К счастью, квадрокоптер поддерживает специальный режим отладки программы. В этом режиме квадрокоптер с загруженной в него программой может отвечать на специальные запросы. Каждый запрос представляет собой два целых числа: l и r, 1 ≤ l ≤ r ≤ n. В ответ на запрос квадрокоптер сообщает, является ли фрагмент загруженной в него программы, состоящий из команд с l-й по r-ю включительно, корректной программой для квадрокоптера, либо нет. Участник хочет с помощью режима отладки восстановить загруженную в квадрокоптер программу.

Требуется написать программу-решение, которая взаимодействует с программой жюри, моделирующей режим отладки квадрокоптера, и в итоге восстанавливает загруженную в квадрокоптер программу.

Протокол взаимодействия

Это интерактивная задача.

Сначала на вход подаётся целое число n — количество команд в программе квадрокоптера (2 ≤ n ≤ 50 000).

Для каждого теста жюри зафиксировано число k — максимальное количество запросов. Гарантируется, что k запросов достаточно, чтобы решить задачу. Это число не сообщается программе-решению. Ограничения k в различных подзадачах приведены в таблице системы оценивания. Если программа-решение делает более k запросов к программе жюри, то на этом тесте она получает в качестве результата тестирования «Неверный ответ».

Чтобы сделать запрос, программа-решение должна вывести строку вида «? l r», где l и r — целые положительные числа, задающие фрагмент программы квадрокоптера (1 ≤ l ≤ r ≤ n).

В ответ на запрос программы-решения программа жюри подаёт ей на вход либо строку «Yes», либо строку «No», в зависимости от того, является ли запрошенный фрагмент программы квадрокоптера корректной программой.

Если программа-решение определила ответ на задачу, то она должна вывести строку «! c1c2... cn», где символ ci задаёт i-ю команду в программе квадрокоптера и равен либо «(», либо «)».

После этого программа-решение должна завершиться.

Гарантируется, что в каждом тесте программа в памяти квадрокоптера является фиксированной корректной программой, которая не меняется в зависимости от запросов, произведённых программой-решением.

Приведённые примеры иллюстрируют взаимодействие программы-решения с программой жюри «по шагам», для чего в них добавлены дополнительные пустые строки. При реальном тестировании лишние пустые строки вводиться не будут, выводить пустые строки также не требуется.

В первом примере n = 4. Единственная возможная корректная программа из двух команд это «()», поэтому из результатов третьего и четвёртого запросов можно сделать вывод, что программа в памяти квадрокоптера — «()()». Поэтому, в частности, ответ на второй запрос действительно «No», так как фрагмент программы «()(» не является корректной программой: если квадрокоптер исполнит именно эти три команды, он останется на уровне одного метра над землёй.

В втором примере n = 6, и произведённых запросов достаточно, чтобы однозначно определить, что программа в памяти квадрокоптера — «((()))».

В тестах из условия k = 150, то есть, разрешается произвести не более 150 запросов.


Страница: << 7 8 9 10 11 12 13 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест