Страница: << 1 2 3 >> Отображать по:
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Дано натуральное число N. Требуется написать программу, которая находит такое минимальное число M, произведение цифр которого равно N.

Входные данные

Вводится целое число N (1 ≤ N ≤ 2·106) .

Выходные данные

Выведите на экран одно число M  ≥ 10 или фразу «No solution». Число M должно начинаться со значащей цифры (не с нуля).

Примеры тестов

Входные данные
20
Выходные данные
45
Входные данные
1
Выходные данные
11
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

В Шахматной Стране всегда пользовались популярностью различные спортивные соревнования: ферзебол, рокировочная борьба, эндшпилевые бега. Но наибольшую популярность в этом году получила спортивная игра «обмен королей».

Суть её заключается в следующем. Двух королей (белого и чёрного) ставят на прямоугольное шахматное поле, некоторые клетки которого отмечены как недостижимые. По правилам игры короли делают ходы по очереди (сначала белый, а затем чёрный), не наступая на недостижимые клетки. Игра считается успешно законченной, если черный и белый короли поменялись местами. В соревновании побеждает та пара королей, которая смогла поменяться местами за минимальное количество ходов.

Напомним, что в шахматах король имеет право переместиться из своей клетки в любую из 8 соседних по вертикали, диагонали или горизонтали, при условии, что она не является соседней для другого короля.

Напишите программу, которая по информации о доске найдет минимальное количество ходов, необходимое для успешного окончания игры.

Входные данные

В первой строке входных данных даны целые числа N и M (1 ≤ N, M ≤ 8) — размеры доски по вертикали и по горизонтали, соответственно. В следующих N строках даны M символов — состояние доски в начале игры. Символ «.» обозначает пустую клетку, символ «*» — недостижимую клетку, символ «W» — белого короля, «B» — черного короля. Гарантируется, что символы «W» и «B» встречаются на поле ровно по одному разу, и короли не находятся в соседних клетках изначально.

Выходные данные

В выходной файл необходимо вывести минимальное количество ходов, которое потребуется для того, чтобы белый король поменялся местами с чёрным. В случае, если поменять королей местами невозможно, требуется вывести «Impossible» без кавычек.

Примеры тестов

Входные данные
4 3
*.*
W.B
...
*.*
Выходные данные
8
Входные данные
2 3
W..
..B
Выходные данные
Impossible

Примечание

Последовательность ходов, необходимая для обмена королей в первом тесте, приведена на рисунке:

ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

В одной школе издавна велись соревнования в информатической силе между классами одной параллели. По введённой учителями шкале информатическая сила класса — это суммарное количество задач, решённых всеми школьниками этого класса на последней районной олимпиаде. Соревновательный дух школы весьма высок, а значит, каждый участник решил хотя бы одну задачу.

В школьной летописи сохранились информатические силы двух классов, \(A\) и \(B\), а также количество задач на олимпиаде \(N\). Завучу, нашедшему летопись, очень хочется узнать, могло ли быть в первом классе больше учеников, чем во втором.

Напишите программу, которая определит, могло ли быть учеников в классе с информатической силой \(A\) больше, чем учеников в классе с информатической силой \(B\).

Входные данные

Вводятся три целых числа, каждое в своей строке — \(A\), \(B\), \(N\) (\(0 \le A, B \le 10 000, 1 \le N \le 10 000\)).

Выходные данные

Выведите «Yes», если в первом классе могло быть больше учеников, чем во втором, и «No», в противном случае.

Примечания

Тесты к этой задаче состоят из трех групп.

  • Тесты 1 – 3. Тесты из условия, оцениваются в ноль баллов.
  • Тесты 4 – 17. В тестах этой группы \(0 \le A, B \le 10, 1 \le N \le 10\). Эта группа оценивается в 30 баллов, баллы ставятся только при прохождении всех тестов группы.
  • Тесты 18 – 30. В тестах этой группы дополнительные ограничения отсутствуют. Эта группа оценивается в 70 баллов, баллы ставятся только при прохождении всех тестов группы.

Примеры
Входные данные
60
30
4
Выходные данные
Yes
Входные данные
30
30
1
Выходные данные
No
Входные данные
30
150
4
Выходные данные
No
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Настал декабрь, и вместе с ним пришло время готовиться к Новому Году. На острове рыцарей и лжецов этот праздник традиционно отмечается очень масштабно. Праздничный стол, новогодняя ёлка, конфетти и бенгальские огни — все готово к началу торжества.

Как вы знаете, на острове рыцарей и лжецов живут только два вида жителей — рыцари и лжецы. Рыцари никогда не лгут, так как этого им не позволяют их высокие моральные принципы. Лжецы же, наоборот, всегда говорят только неправду.

Важнейшей частью празднования Нового года является хоровод вокруг елки. Все приглашенные жители острова берутся за руки и движутся по кругу под музыку. Поскольку население острова весьма консервативно, то в этом году жители хотят выстроиться в круг в том же порядке, что и в прошлом. Однако данных о том, как был устроен хоровод, не сохранилось. Известно только, что каждый житель острова запомнил, кем были его соседи по хороводу (рыцарями или лжецами).

Опросив каждого человека, приглашенного на празднование, вы узнали, кем были их соседи по их словам (при этом лжецы говорят неправду про каждого соседа). Осталось только придумать какое-нибудь расположение жителей острова в круг так, чтобы их показания не противоречили друг другу.

Напишите программу, которая по списку жителей и их показаний определит, существует ли такое расположение или же выстроиться в хоровод как в прошлом году не получится.

Входные данные

В первой строке входных данных дано целое число n (2 ≤ n ≤ 105) — количество жителей на острове лжецов.

В следующих n строках даны целые числа li и ri (0 ≤ li, ri ≤ 1) — данные о соседях i-го человека. Если li = 0, то i-й житель утверждает, что его сосед по хороводу в направлении против часовой стрелки был лжецом, а если li = 1, то рыцарем. Аналогично, число ri содержит информацию о соседе по часовой стрелке.

Выходные данные

Требуется вывести «Yes», если существует способ выстроить людей по указанным правилам, или «No», если нет.

Примеры тестов

Входные данные
5
1 1
0 1
1 1
0 0
1 0
Выходные данные
Yes
Входные данные
2
0 0
1 1
Выходные данные
No

Примечание

Тесты к этой задаче состоят из четырёх групп.

  • Тесты 1 – 2. Тесты из условия, оцениваются в ноль баллов.
  • Тесты 3 – 10. На тесты этой группы накладывается ограничение n ≤ 10. Группа тестов оценивается в 20 баллов, баллы ставятся только при прохождении всех тестов группы.
  • Тесты 11 – 26. На тесты этой группы накладывается ограничение n ≤ 20. Группа тестов оценивается в 25 баллов, баллы ставятся только при прохождении всех тестов группы.
  • Тесты 27 – 38. В тестах этой группы дополнительные ограничения отсутствуют. Группа оценивается в 55 баллов, баллы ставятся только при прохождении всех тестов группы.

В первом примере, можно выстроить жителей в порядке (2, 1, 3, 5, 4) по часовой стрелке. Показания всех людей будут сходиться в этом случае, например, когда четвертый житель будет рыцарем, а все остальные четыре человека — лжецами.

Во втором примере, очевидно, нельзя получить никакого решения, так как выстроить двух человек в хоровод можно лишь одним способом. Рассмотрим два случая: если первый человек — рыцарь, то, по его словам, второй человек — лжец, однако, из лживости его слов следует, что первый человек не рыцарь. С другой стороны, если первый человек — лжец, то из его показаний следует, что второй человек — рыцарь, но второй человек говорит, что первый — тоже рыцарь. Таким образом, поскольку в обоих случаях мы получили противоречие, не существует способа построить хоровод из имеющегося набора жителей.

ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
256 megabytes

На день рождения Егору подарили волшебный квадрат.

Волшебный квадрат — это таблица 3 × 3, в каждой из ячеек которой находятся числа от 0 до 9. Егор придумал следующую игру с волшебным квадратом: он загадывает число N и пытается так поставить числа в каждую ячейку квадрата, чтобы сумма чисел в каждой строке и каждом столбце была равна в точности N.

Пусть расстановка — это волшебный квадрат, заполненный числами. Тогда расстановки A и B считаются различными, если хотя бы для каких-то строки x и столбца y выполняется неравенство Ax, y ≠ Bx, y, где Ax, y и Bx, y — это числа, находящиеся в строке x и столбце y в расстановках A и B соответственно.

Егор задумался, сколько всего существует различных расстановок таких, что сумма в каждой строке и в каждом столбце была равна в точности N.

Напишите программу, которая поможет ответить на вопрос Егора.

Входные данные

Единственная строка входных данных содержит целое число N (0 ≤ N ≤ 109).

Выходные данные

Требуется вывести одно число — искомое количество расстановок.

Примеры тестов

Входные данные
0
Выходные данные
1

Примечание

В примере из условия существует всего одна допустимая расстановка — это таблица 3 × 3, состоящая из нулей. Очевидно, что сумма элементов в любой строке или столбце в такой расстановке равна 0.


Страница: << 1 2 3 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест