Сегодня мальчик Саша на уроке математики узнал про фракталы. Учитель показывал так называемую «кривую дракона». Она представляет собой геометрическую фигуру, которая строится следующим образом: на первом шаге проводится отрезок из начала координатной плоскости в точку (0; 1). Далее на каждом шаге из конца фрактала повторяется уже нарисованная часть фигуры, повернутая на 90 градусов против часовой стрелки (см. рисунок).
После уроков Саша попробовал сам изобразить «кривую дракона», и теперь он хочет знать, в какой точке координатной плоскости он закончил рисовать фрактал, проделав описанные выше N шагов. Требуется написать программу, которая по заданному числу N определяет координаты конца фрактала после выполнения N шагов.
Вводится одно целое число N (1 ≤ N ≤ 30).
Выведите два числа через пробел — координаты конца фрактала.
2
1 1
4
2 -2
В одном известном всем городе скоро стартуют Зимние Олимпийские игры. В связи с этим организаторы игр решили провести эстафету Олимпийского огня — самую продолжительную и масштабную в истории Олимпийских игр. Эстафета состоит из \(N\) этапов, каждый длиной \(a_i\) километров (\(1 \le i \le N\)). У организаторов имеется большое количество олимпийских факелов, каждый из которых может непрерывно гореть на протяжении \(K\) километров забега. По правилам эстафеты каждый факел используется только один раз. В начале каждого этапа участникам эстафеты выдаётся некоторое число факелов, такое, чтобы олимпийский огонь удалось донести до конца этапа. По окончании этапа все использованные (полностью или частично) факелы передаются в дар своим факелоносцам.
Напишите программу, которая по известной схеме эстафеты олимпийского огня, определяет необходимое суммарное количество факелов для проведения эстафеты.
В первой строке заданы два натуральных числа \(N\) и \(K\) (\(N \le 100, K \le 10^6\) ).
Во второй строке заданы \(N\) натуральных чисел \(a_i (a_i \le 10^6 )\).
В первой строке выведите одно натуральное число \(F\) — количество факелов, которое понадобится организаторам для проведения эстафеты олимпийского огня.
В данной задаче баллы за каждый тест начисляются независимо от прохождения остальных тестов и суммируются.
4 3 3 5 4 1
6
10 1 1 2 3 4 5 6 7 8 9 10
55
Недавно Петя услышал на шахматном кружке о мегашахматах.
Поле для мегашахмат — это разделённый на клетки прямоугольник, в котором каждый горизонтальный ряд клеток имеет свою высоту, а каждый вертикальный столбец — свою ширину. Всего на поле n рядов и m столбцов клеток, высота i-го ряда составляет ai сантиметров, а ширина j-го столбца — bj сантиметров. Столбцы нумеруются слева направо, а строки — снизу вверх. Клетки покрашены в чёрный и белый цвета в шахматном порядке, левая нижняя клетка поля черная. Это значит, что соседи каждой клетки по вертикали и горизонтали отличаются от нее по цвету.
Пете стало очень интересно, какую площадь в квадратных сантиметрах занимают чёрные и белые клетки. Напишите программу, которая вычислит искомые площади.
В первой строке вводятся два целых числа n и m — количества рядов и столбцов клеток на поле для мегашахмат (1 ≤ n, m ≤ 105).
Во второй строке вводится n целых чисел ai — высоты рядов клеток в сантиметрах (1 ≤ ai ≤ 100).
В третьей строке вводится m целых чисел bj — ширины столбцов клеток в сантиметрах (1 ≤ bj ≤ 100).
Выведите два числа в одной строке: площадь всех чёрных клеток и площадь всех белых клеток в квадратных сантиметрах на поле.
8 8
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
32 32
2 3
3 2
3 2 1
16 14
Второй тест из условия соответствует рисунку.
Тесты к этой задаче состоят из трех групп. Если решение не проходит какую-либо группу тестов, следующие группы не проверяются.