Лавочки в парке устроены следующим образом. Несколько одинаковых кубических гранитных блоков ставятся в ряд, а на них кладется гранитная плита (см. рисунок). Архитектор-модернист решил, что будет интереснее, если у всех лавочек расположение гранитных блоков-ножек будет разным (и не обязательно симметричным). При этом они располагаются так, чтобы плита не падала: для этого достаточно, чтобы и слева, и справа от центра плиты был хотя бы один гранитный блок или его часть (в частности, если центр плиты приходится на середину какого-нибудь блока, то и слева, и справа от центра плиты находится часть блока, и плита не падает).
Грабители обнаружили, что можно по одному вытаскивать гранитные блоки, находящиеся с краю (как слева, так и справа). Они хотят вытащить из-под лавочки как можно больше блоков так, чтобы она при этом не упала (передвигать оставшиеся блоки нельзя). Определите, какие блоки они должны оставить.
В первой строке входных данных содержатся два числа: L - длина лавочки и K - количество гранитных блоков-ножек. Оба числа натуральные и не превышают 10 000.
Во второй строке следуют K различных целых неотрицательных чисел, задающих положение каждой ножки. Положение ножки определяется расстоянием от левого края плиты до левого края ножки (ножка - это куб размером 1×1×1). Ножки перечислены слева направо (то есть начиная с ножки с меньшим расстоянием до левого края).
Требуется перечислить ножки, которые грабителям нужно оставить. Для каждой ножки нужно выдать ее положение, как оно задано во входных данных. Ножки следует перечислять слева направо, в том порядке, в котором они встречаются во входных данных.
Пример
Входные данные | Выходные данные |
5 2 0 2 |
2 |
13 4 1 4 8 11 |
4 8 |
14 6 1 6 8 11 12 13 |
6 8 |
Второй пример соответствует лавочке на рисунке.
Последовательность чисел назовем симметричной, если она одинаково читается как слева направо, так и справа налево. Например, следующие последовательности являются симметричными:
1 2 3 4 5 4 3 2 1
1 2 1 2 2 1 2 1
Вашей программе будет дана последовательность чисел. Требуется определить, какое минимальное количество и каких чисел надо приписать в конец этой последовательности, чтобы она стала симметричной.
Сначала вводится число \(N\) — количество элементов исходной последовательности (1 ≤ \(N\) ≤ 100). Далее идут \(N\) чисел — элементы этой последовательности, натуральные числа от 1 до 9.
Выведите сначала число \(M\) — минимальное количество элементов, которое надо дописать к последовательности, а потом \(M\) чисел (каждое — от 1 до 9) — числа, которые надо дописать к последовательности.
9 1 2 3 4 5 4 3 2 1
0
5 1 2 1 2 2
3 1 2 1
5 1 2 3 4 5
4 4 3 2 1
Из шахматной доски по границам клеток выпилили связную (не распадающуюся на части) фигуру без дыр. Требуется определить ее периметр.
Сначала вводится число \(N\) (1 ≤ \(N\) ≤ 64) – количество выпиленных клеток. В следующих \(N\) строках вводятся координаты выпиленных клеток, разделенные пробелом (номер строки и столбца – числа от 1 до 8). Каждая выпиленная клетка указывается один раз.
Выведите одно число – периметр выпиленной фигуры (сторона клетки равна единице).
1) Вырезан уголок из трех клеток. Сумма длин его сторон равна 8.
2) Вырезана одна клетка. Ее периметр равен 4.
3 1 1 1 2 2 1
8
1 8 8
4
Как известно, обычно штаны состоят из двух штанин. Однако собачке нужны, например, уже штаны из 5 штанин (для 4-х лап и хвоста), а сороконожке – штаны с 40 штанинами.
У Пети живет Зверь, у которого M лап. Иногда – когда на улице особенно холодно, чтобы Зверь не простудился, на него бывает нужно надеть несколько штанов, чтобы на каждой лапе было надето по несколько штанин.
Петина мама оставила Пете N штанов, имеющих соответственно K1, K2, …, KN штанин, наказав ему надеть на Зверя их все. Петя хочет надеть на Зверя штаны так, чтобы на самой «утепленной» лапе оказалось как можно меньше штанин, но при этом все оставленные мамой штаны были надеты на зверя. Любые штаны можно надевать на любой набор лап (каждая лапа встречается в наборе не более одного раза).
Помогите ему – напишите программу, которая для каждых штанов укажет, на какие лапы должны быть надеты их штанины. Имейте в виду, что две штанины одних и тех же штанов не могут быть надеты на одну и ту же лапу (в то время как штанины разных штанов могут быть надеты на одну и ту же лапу).
Вводится сначала число M, а затем число N (1 ≤ M ≤ 100, 1 ≤ N ≤ 100). Далее вводятся N чисел Ki, обозначающих число штанин у оставленных мамой штанов (1 ≤ Ki ≤ M).
Выведите N строк, в i-ой строке должно быть выведено Ki различных чисел, обозначающих номера лап Зверя, на которые должны быть надеты штанины i-ых штанов. Лапы Зверя нумеруются натуральными числами от 1 до M. Если искомых ответов несколько, то выведите любой из них.
Комментарии к примерам тестов.
1. Первые штаны надеты на лапу 1;
вторые штаны надеты на лапы 1 и 2;
третьи штаны надеты на лапы 2, 3 и 4.
Таким образом, на самых «утепленных» лапах (а это лапы 1 и 2) надето по 2 штанины.
2. Первые штаны надеты на лапы 1, 2 и 3;
вторые штаны надеты на лапы 1 и 4.
Таким образом, количество штанов на самой «утепленной» лапе (это лапа номер 1) – 2.
4 3 1 2 3
1 2 3 4 1 2
4 2 3 2
1 2 3 4 1
По дороге одна за другой движутся N черепах. Каждая черепаха говорит фразу вида: “Впереди меня ai черепах, а позади меня bi черепах”. Ваша задача определить самое большее количество черепах, которые могут говорить правду.
Широко известна следующая задача для младших школьников. Три черепахи ползут по дороге. Одна черепаха говорит: “Впереди меня две черепахи”. Другая черепаха говорит: “Позади меня две черепахи”. Третья черепаха говорит: “Впереди меня две черепахи и позади меня две черепахи”. Как такое может быть? Ответ: третья черепаха врет!
По дороге одна за другой движутся N черепах. Каждая черепаха говорит фразу вида: “Впереди меня ai черепах, а позади меня bi черепах”. Ваша задача определить самое большое количество черепах, которые могут говорить правду.
В первой строке вводится целое число N \((1 \le N \le 10000)\). Далее следуют N строк, содержащих целые числа ai и bi, по модулю не превосходящие 10000, описывающие высказывание i-ой черепахи.
Данные о высказываниях черепах приведены в произвольном порядке, то есть первое высказывание не обязательно соответствует черепахе, идущей во главе колонны, второе - не обязательно следующей за ней и так далее
Выведите целое число M – максимальное количество черепах, которые могут говорить правду.
3 2 0 0 2 2 2
2