---> 1 задач <---
Источники --> Личные олимпиады --> Украинские олимпиады
    1999(3 задач)
    2000(5 задач)
    2001(4 задач)
    2002(7 задач)
    2003(3 задач)
    2004(6 задач)
    2005(5 задач)
    2006(6 задач)
    2007(6 задач)
    2008(5 задач)
    2009(6 задач)
    2010(0 задач)
    2011(0 задач)
    2012(0 задач)
    2013(0 задач)
    2016(5 задач)
Страница: 1 Отображать по:
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes

Петрик и Василько — настоящие друзья, поэтому они постоянно задают друг другу всевозможные интересные задачи. Однако Василько всегда с легкостью решает задачи своего друга, поэтому Петрик решил придумать по-настоящему сложную задачу. И вот что у него получилось. Будем называть число b подчислом числа a , если из числа a можно вычеркнуть некоторые цифры так, что цифры, которые остались, образуют число b . Задано n -цифровое число x . Обозначим как x k наибольшее k -цифровое подчисло числа x . Необходимо ответить на m запросов. Каждый запрос состоит из двух цифр - k и l . Ответом на запрос является l -я цифра числа x k . На этот раз задача действительно заставила Василько задуматься. А сможете ли вы решить ее быстрее его?

Входные данные

В первой строке входного файла содержится целое число x длины n ( 1 ≤ n ≤ 100 000 ). Во второй строке содержится число m ( 1 ≤ m ≤ 50 000 ). В следующих m строках содержится по два числа k i , l i ( 1 ≤ k i n , 1 ≤ l i k i ) — параметры i -го запроса.

Выходные данные

Выходной файл должен содержать одну строку длины m , i -й символ которого является ответом на i -й запрос.

Примечание

  1. n = 20, m = 10 000 .( 15 баллов)
  2. n · m ≤ 500 000 .( 25 баллов)
  3. n ≤ 100 000, m ≤ 50 000 .( 60 баллов)
Примеры
Входные данные
31415926
7
2 2
3 1
1 1
4 3
5 2
8 2
7 3
Выходные данные
6992511

Страница: 1 Отображать по:
Выбрано
:
Отменить
|
Добавить в контест