Темы --> Информатика
    Язык программирования(952 задач)
    Алгоритмы(1657 задач)
    Структуры данных(279 задач)
    Интерактивные задачи(17 задач)
    Другое(54 задач)
---> 544 задач <---
Страница: << 88 89 90 91 92 93 94 >> Отображать по:
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes

Физики проводят эксперимент для исследования частиц трёх типов: \(x\), \(y\) и \(z\). Они запускают в коллайдер пронумерованный ряд из \(n\) частиц. Во время эксперимента происходит воздействие на одну конкретную частицу, после чего частица исчезает с \(i\)-ого места ряда и моментально появляется на месте \(j\). После её исчезновения номера частиц, стоящих правее, уменьшаются на 1, а после появления, номера частиц, стоящих правее, увеличиваются на 1. После определенного числа воздействий физики интересуются какая частица стоит на месте \(k\). Напишите программу, которая поможет физикам.

Входные данные

В первой строке файла два целых числа: \(n\) – количество частиц и m — общее количество воздействий и вопросов (1 \(\le\) \(n\) \(\le\) 1000000, 1 \(\le\) \(m\) \(\le\) 15000). Во второй строке — последовательность из символов \(x\), \(y\) и \(z\) длиной \(n\). На каждой из следующих \(m\) строк (1 \(\le\) \( m\) \(\le\) 15000) описано воздействие или вопрос. Строка, в которой описано воздействие, начинается символом \(a\) и после пробела дается два целых числа из интервала [1; \(n\)]. Первое из них показывает начальное, а второе  конечное местоположение частицы во время воздействия. Строка, в которой описан вопрос, начинается символом \(q\) и после пробела дается одно целое число из интервала [1; \(n\)]. Оно указывает позицию, которая интересует физиков.

Выходные данные

Выведите столько строк, сколько вопросов во входном файле. В строке номер \(i\) надо записать ответ на вопрос \(i\) — название соответствующей частицы \(x\), \(y\) или \(z\).

Пояснения к примеру

Последовательность после первого воздействия – xxyyzxxzxzyyzyx, последовательность после второго воздействия – xxyxyzxxzxzyyzy, последовательность после третьего воздействия – xyxyxyzxxzxzyzy,

Примеры
Входные данные
15 6
xzxyyzxxzxyyzyx
a 2 10
a 15 4
q 3
a 12 2
q 14
q 2
Выходные данные
y
z
y
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes

У вас есть таблица c \(N\) строками и \(M\) столбцами. В каждой ячейке таблицы записана одна строчная буква английского алфавита. Рассмотрим все возможные пути от левого верхнего угла до правого нижнего угла, если вам разрешено идти только вправо и вниз. Конкатенация букв в порядке обхода составляют строку. Скажем, что эта строка  значение пути. Теперь рассмотрим все такие пути и отсортируем их значения в алфавитном порядке. Ваша задача найти значение \(K\)-го пути в этом отсортированном листе.

Входные данные

В первой строке задается два целых числа \(N\)  количество рядов и \(M\)  количество столбцов заданной таблицы (1 \(\le\) \(N\), \(M\) \(\le\) 30). Каждая из следующих \(N\) строк содержит ровно \(M\) строчных букв английского алфавита. Последняя строка входного файла содержит целое число \(K\) (1 \(\le\) \(K\) \(\le\) 1018). Гарантируется, что для \(K\) ответ всегда существует.

Выходные данные

Первая и последняя строка выходного файла должна содержат одну строку - ответ к задаче.

Пояснения к примеру

abcdgk, abcdgk, abcdjk, abfdgk, abfdjk, abfijk, aefdgk, aefdjk, aefijk, aehijk

Примеры
Входные данные
3 4
abcd
efdg
hijk
4
Выходные данные
abfdgk
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

На олимпиаду по информатике пришло N участников. Известно, в каких школах учатся участники олимпиады. В компьютерном классе имеется N компьютеров, стоящих в линию вдоль стены. Вам необходимо рассадить участников олимпиады так, чтобы никакие два участника из одной школы не сидели рядом.

Формат входного файла

Программа получает на вход целое положительное число участников олимпиады \(N \le 1000\). Далее в N строках записаны номера школ, в которых учатся участники олимпиады. Номера школ — целые числа от 1 до 3000.

Формат выходного файла

Программа должна вывести N чисел — номера школ участников олимпиады в том порядке, в котором их необходимо рассадить в компьютерном классе. Выведенная последовательность номеров школ должна быть перестановкой данных номеров школ. В выведенном ответе не должно быть двух одинаковых номеров школ, идущих подряд.

Если задача не имеет решения, необходимо вывести одно число 0.

Числа можно выводить как в отдельных строках, так и в одной строке через пробел. Если есть несколько вариантов рассадки, то необходимо вывести любой из них (но только один).

Примеры
Входные данные
4
1005
1005
5
2005
Выходные данные
1005 5 1005 2005 
Входные данные
4
1005
1005
2005
1005
Выходные данные
0
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

В одной школе издавна велись соревнования в информатической силе между классами одной параллели. По введённой учителями шкале информатическая сила класса — это суммарное количество задач, решённых всеми школьниками этого класса на последней районной олимпиаде. Соревновательный дух школы весьма высок, а значит, каждый участник решил хотя бы одну задачу.

В школьной летописи сохранились информатические силы двух классов, \(A\) и \(B\), а также количество задач на олимпиаде \(N\). Завучу, нашедшему летопись, очень хочется узнать, могло ли быть в первом классе больше учеников, чем во втором.

Напишите программу, которая определит, могло ли быть учеников в классе с информатической силой \(A\) больше, чем учеников в классе с информатической силой \(B\).

Входные данные

Вводятся три целых числа, каждое в своей строке — \(A\), \(B\), \(N\) (\(0 \le A, B \le 10 000, 1 \le N \le 10 000\)).

Выходные данные

Выведите «Yes», если в первом классе могло быть больше учеников, чем во втором, и «No», в противном случае.

Примечания

Тесты к этой задаче состоят из трех групп.

  • Тесты 1 – 3. Тесты из условия, оцениваются в ноль баллов.
  • Тесты 4 – 17. В тестах этой группы \(0 \le A, B \le 10, 1 \le N \le 10\). Эта группа оценивается в 30 баллов, баллы ставятся только при прохождении всех тестов группы.
  • Тесты 18 – 30. В тестах этой группы дополнительные ограничения отсутствуют. Эта группа оценивается в 70 баллов, баллы ставятся только при прохождении всех тестов группы.

Примеры
Входные данные
60
30
4
Выходные данные
Yes
Входные данные
30
30
1
Выходные данные
No
Входные данные
30
150
4
Выходные данные
No
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

В одном известном всем городе скоро стартуют Зимние Олимпийские игры. В связи с этим организаторы игр решили провести эстафету Олимпийского огня — самую продолжительную и масштабную в истории Олимпийских игр. Эстафета состоит из \(N\) этапов, каждый длиной \(a_i\) километров (\(1 \le i \le N\)). У организаторов имеется большое количество олимпийских факелов, каждый из которых может непрерывно гореть на протяжении \(K\) километров забега. По правилам эстафеты каждый факел используется только один раз. В начале каждого этапа участникам эстафеты выдаётся некоторое число факелов, такое, чтобы олимпийский огонь удалось донести до конца этапа. По окончании этапа все использованные (полностью или частично) факелы передаются в дар своим факелоносцам.

Напишите программу, которая по известной схеме эстафеты олимпийского огня, определяет необходимое суммарное количество факелов для проведения эстафеты.

Входные данные

В первой строке заданы два натуральных числа \(N\) и \(K\) (\(N \le 100, K \le 10^6\) ).

Во второй строке заданы \(N\) натуральных чисел \(a_i (a_i \le 10^6 )\).

Выходные данные

В первой строке выведите одно натуральное число \(F\) — количество факелов, которое понадобится организаторам для проведения эстафеты олимпийского огня.

Примечания

В данной задаче баллы за каждый тест начисляются независимо от прохождения остальных тестов и суммируются.

Примеры
Входные данные
4 3
3 5 4 1
Выходные данные
6
Входные данные
10 1
1 2 3 4 5 6 7 8 9 10
Выходные данные
55

Страница: << 88 89 90 91 92 93 94 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест