Страница: << 79 80 81 82 83 84 85 >> Отображать по:
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Сколько всего натуральных чисел состоят из не менее чем a цифр и не более, чем b цифр?

Входные данные

Вводятся два произвольных натуральных числа a и b через пробел. Каждое не превышает 10000.

Выходные данные

Выведите одно число: количество чисел, обладающих указанным свойством.

Примеры
Входные данные
1 2
Выходные данные
99
Входные данные
1 1
Выходные данные
9
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

По кругу записано несколько букв (возможно, повторяющихся). Петя интересуется, сможет ли он прочитать некоторое слово, если будет двигаться по кругу (в каком-либо направлении), не пропуская буквы (откуда начинать, и в какую сторону двигаться, он может выбрать сам).

Входные данные

В первой строке записаны строчные латинские буквы в том порядке, в котором они расставлены по кругу по часовой стрелке. Буквы записаны без пробелов, их количество не меньше 1 и не больше 100.

Во второй строке записано слово, которое хочет найти Петя. Оно также состоит из строчных латинских букв и имеет длину от 1 до 100.

Выходные данные

Выведите YES заглавными латинскими буквами, если такое слово можно прочитать, двигаясь по кругу, и NO в противном случае.

Примеры
Входные данные
abcdefg
abd
Выходные данные
NO
Входные данные
abcdg
bag
Выходные данные
YES
Входные данные
a
aaa
Выходные данные
YES
#3905
  
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Представьте число 2011 в виду суммы K последовательных простых чисел (то есть простых чисел, между которыми нет других простых чисел). Например, число 31 можно представить в виде суммы трех посдедовательных простых чисел следующим образом: 7 + 11 + 13 = 31.

Входные данные

Вводится одно натуральное число K (от 1 до 2011).

Выходные данные

Выведите слагаемые в порядке возрастания, разделяя их пробелом.

Если разложить в сумму K слагаемых невозможно, выведите NO SOLUTION (заглавными буквами).

Примеры
Входные данные
3
Выходные данные
661 673 677
Входные данные
2
Выходные данные
NO SOLUTION

В некоторой карточной игре используется колода, в которой 4 туза. В игре принимает участие 4 игрока, каждому из которых раздается равное число карт, а две карты откладываются в прикуп.

Каждый игрок похвастал, сколько у него тузов. Определите, сколько игроков заведомо солгали.

Например, они сказали 1, 1, 1, 2. Следовательно, заведомо солгал 1 игрок. (Какие-то трое могли сказать правду, но все четверо правду сказать не могли, так как тузов всего 4).

Входные данные

Вводятся 4 числа (от 0 до 9 каждое), разделенных пробелом – количество тузов по словам первого, второго, третьего и четвертого игроков.

Выходные данные

Выведите одно число – минимальное количество игроков, которые заведомо солгали. Если все одновременно могли сказать правду, выведите число 0.

Примеры
Входные данные
1 1 1 2
Выходные данные
1
Входные данные
1 1 1 1
Выходные данные
0
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Дано алгебраическое выражение, состоящее из натуральных чисел, переменных (a, b, c, ..., z) записанных строчной латинской буквой, знаков арифметических операций  + ,  - ,  *  (умножение) и  *  *  (возведение в степень). При этом если после числа идет переменная, то знак умножения может быть пропущен.

Требуется подсчитать, сколько в данном выражении умножений и сколько возведений в степень.

Входные данные

Ввдится строка, состоящая не более чем из 200 символов, и не менее, чем из одного символа. Она представляет собой корректное алгебраическое выражение.

Выходные данные

Выведите два числа через пробел: количество умножений и количество возведений в степень.

Примеры
Входные данные
2x+5
Выходные данные
1 0
Входные данные
x**y**2z*3*5
Выходные данные
3 2

Страница: << 79 80 81 82 83 84 85 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест