Страница: << 13 14 15 16 17 18 19 >> Отображать по:
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes
Дана запись таблицы, в формате, похожем на csv. Необходимо для каждой ячейки определить, какой тип в ней хранится.

Электронная таблица представляет собой прямоугольную таблицу, левая и верхняя граница которой зафиксированы, а правая и нижняя отсутствуют, таким образом, таблица бесконечна вправо и вниз. В каждой ячейке таблицы может быть записано какое-либо значение. Значение ячейки – это произвольная последовательность символов с кодами от 32 до 126.

При сохранении таблицы в файл она записывается в специальном формате. Ячейки перечисляются в файле, начиная с левой верхней, по строкам сверху вниз, внутри строки слева направо. В каждой строке перечисляется несколько подряд идущих ячеек, начиная с первой, при этом заведомо перечисляются все непустые ячейки данной строки. Всего в файл выводится несколько подряд идущих строк, начиная с первой, при этом выводятся, как минимум, все строки, в которых содержится хотя бы одна непустая ячейка.

Значения соседних ячеек при записи в файл разделяются между собой символом ","(запятая), строки таблицы отделяются друг от друга символом ";" (точка с запятой). После последней клетки идет символ "." (точка). За каждым из этих символов может немедленно следовать один перевод строки, который должен игнорироваться. Другие переводы строки во файле не встречаются.

Если в значении ячейки встречается один из символов ",", ";", ".'"или "\", то в файл записывается два символа – сначала "\", а затем данный символ. Соответственно, запятая, точка с запятой и точка, которые идут непосредственно после "\", не являются разделителями значений ячеек. В частности, после них не может следовать перевода строки.

Каждая ячейка относится к одному из трех типов: числовая, строковая, пустая. Пустая ячейка – это ячейка, значение которой является пустой строкой. Числовая ячейка содержит целое число из диапазона от -32768 до 32767 включительно. Число должно быть записано без ведущих нулей и лишних знаков "+" или "-" (знак "-'" должен быть только у отрицательных чисел, причем ровно один). Любая другая ячейка относится к строковому типу. Так, например, к строковому типу относятся ячейки, содержащие следующие значения: 01 (включает ведущий нуль), 55000 (не входит в указанный диапазон), а также ячейка, содержащая один символ "пробел".

Столбец таблицы называется пустым, если все ячейки, которые он содержит – пустые. Столбец таблицы называется числовым, если он содержит только числовые и пустые ячейки. В противном случае столбец называется строковым. Требуется для каждого столбца таблицы, начиная с первого, и до последнего непустого, определить, к какому типу он относится.

Входные данные

На вход программы поступает электронная таблица, размер входных данных не превышает 32767 байт.

Выходные данные

Для всех столбцов, начиная с первого, и до последнего непустого столбца, выведите их тип, разделив значения запятыми, и в конце поставьте точку. В качестве типа столбца выведите одно из следующих значений: "EMPTY'', если столбец является пустым, "NUMBER'', если столбец является числовым, "STRING'', если столбец является строковым.

Пояснение к первому примеру

Таблица для первого примера приведена ниже. Символ "пробел" обозначен как □

Примеры
Входные данные
;,12;,, ;
;,17,2,,-1\.0.
Выходные данные
EMPTY,NUMBER,STRING,EMPTY,STRING.
Входные данные
.
Выходные данные
.
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes
Над двумерной таблицей введена операция A, которая по координатам клетки, направлению и числу, прибавляет это число ко всем ячейкам от начальной в заданном направлении. Также определена операция B, которая вызывает операцию A для всех ячеек заданного прямоугольника.

Специальный терминал, разработанный в лаборатории, где работает Дима, представляет собой горизонтальный прямоугольник, состоящий из m×n ячеек, каждая из которых может содержать произвольное целое число. Ячейки занумерованы парами чисел, левая верхняя ячейка имеет номер (1, 1), правая нижняя – (\(m\), \(n\)).

Специальное устройство ввода, сконструированное специально для этого терминала, позволяет отправлять терминалу две команды: \(A\)(\(r\), \(c\), \(d\), \(v\)) и \(B\)(\(r_1\), \(c_1\), \(r_2\), \(c_2\), \(d\), \(v\)).

Рассмотрим сначала команду \(A\). Параметры \(r\) и \(c\) изменяются в пределах от 1 до \(m\) и от 1 до \(n\) соответственно и указывают, к какой ячейке применяется команда. Параметр \(d\) может принимать значение из множества {\(L\), \(R\), \(U\), \(D\)} и задает направление, в котором применяется команда: влево, вправо, вверх или вниз соответственно. Параметр \(v\) представляет собой целое неотрицательное число. В результате выполнения команды значения во всех ячейках, находящихся в направлении \(d\) от ячейки (\(r\), \(c\)), включая эту ячейку, увеличиваются на \(v\).

Например, если терминал имеет размер 5×4, то после выполнения команды \(A\)(3, 2, \(R\), 3) значения в ячейках (3, 2), (3, 3) и (3, 4) увеличатся на 3, а после команды \(A\)(2, 1, \(U\), 2) значения в ячейках (2, 1) и (1, 1) увеличатся на 2.

Рассмотрим теперь команду \(B\). Первые четыре ее параметра являются целыми числами и удовлетворяют условиям 1\( \le\) \(r_1\) \(\le\) \(r_2\) \(\le\) \(m\) и 1\( \le\) \(c_1\) \(\le\) \(c_2\) \(\le\) \(n\). Параметры \(d\) и \(v\) могут принимать те же значения, что и соответствующие параметры команды \(A\). Команда \(B\) выполняется следующим образом: для всех пар (\(r\), \(c\)), таких, что \(r_1\) \(\le\) \(r\) \(\le\) \(r_2\) и \(c_1\) \(\le\) \(c\) \(\le\) \(c_2\) выполняется команда \(A\)(\(r\), \(c\), \(d\), \(v\)).

Исходно все ячейки терминала содержат нули. Выведите содержимое терминала после выполнения заданной последовательности команд.

Входные данные

В первой строке вводятся числа \(m\) и \(n\), ( 1\( \le\)m, n\( \le\)200). В следующей строке задается число \(k\) – количество команд, которые следует обработать ( 0\( \le\)k\( \le\)40 000). Далее идут \(k\) строк, содержащих описания команд. Первый символ каждой строки задает тип команды, затем следует пробел и параметры команды, каждые два последовательных параметра разделены ровно одним пробелом. Параметр \(v\) каждой команды неотрицателен и не превышает 100.

Общее число команд \(A\), которое потребуется выполнить на терминале, включая команды, которые придется выполнить при выполнении команд \(B\), не превышает 5 * \(10^6\).

Выходные данные

Выведите \(m\) строк по \(n\) чисел в каждой – содержимое терминала после выполнения указанной последовательности команд.

Примеры
Входные данные
5 4
4
A 2 2 D 1
A 3 4 L 2
B 2 3 3 4 U 13
B 1 1 2 1 R 5
Выходные данные
5 5 31 31 
5 6 31 31 
2 3 15 15 
0 1 0 0 
0 1 0 0 
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes
В ориентированном графе ребро задается 4 числами: начальной и конечной вершинами, временем отправления и временем прибытия. Причем, время прибытия может быть меньше либо равно времени отправления.

Между \(N\) населенными пунктами совершаются пассажирские рейсы на машинах времени.

В момент времени 0 вы находитесь в пункте \(A\). Вам дано расписание рейсов. Требуется оказаться в пункте B как можно раньше (то есть в наименьший возможный момент времени).

При этом разрешается делать пересадки с одного рейса на другой. Если вы прибываете в некоторый пункт в момент времени \(T\), то вы можете уехать из него любым рейсом, который отправляется из этого пункта в момент времени \(T\) или позднее (но не раньше).

Входные данные

В первой строке вводится число \(N\) – количество населенных пунктов ( 1\( \le\)N\( \le\)1000). Вторая строка содержит два числа \(A\) и \(B\) – номера начального и конечного пунктов. В третьей строке задается \(K\) – количество рейсов ( 0\( \le\)K\( \le\)1000). Следующие \(K\) строк содержат описания рейсов, по одному на строке. Каждое описание представляет собой четверку целых чисел. Первое число каждой четверки задает номер пункта отправления, второе – время отправления, третье – пункт назначения, четвертое – время прибытия. Номера пунктов – натуральные числа из диапазона от 1 до \(N\). Пункт назначения и пункт отправления могут совпадать. Время измеряется в некоторых абсолютных единицах и задается целым числом, по модулю не превышающим \(10^9\). Поскольку рейсы совершаются на машинах времени, то время прибытия может быть как больше времени отправления, так и меньше, или равным ему.

Гарантируется, что входные данные таковы, что добраться из пункта \(A\) в пункт \(B\) всегда можно.

Выходные данные

Выведите минимальное время, когда вы сможете оказаться в пункте \(B\).

Примеры
Входные данные
2
1 1
2
1 1 2 10
1 10 1 9
Выходные данные
0
Входные данные
1
1 1
3
1 3 1 -5
1 -5 1 -3
1 -4 1 -10
Выходные данные
-10
Входные данные
5
1 2
6
1 0 3 10
4 2 2 -10
4 14 2 -7
3 10 2 10
2 0 4 2
3 10 4 12
Выходные данные
-10
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Яша плавал в бассейне размером \(N\) x \(M\) метров и устал. В этот момент он обнаружил, что находится на расстоянии \(x\) метров от одного из длинных бортиков (не обязательно от ближайшего) и \(y\) метров от одного из коротких бортиков. Какое минимальное расстояние должен проплыть Яша, чтобы выбраться из бассейна на бортик?

Входные данные

Вводятся 4 натуральных числа: \(N\), \(M\), \(x\), \(y\) (N ≠ M), разделенные пробелами. Все числа не превосходят 100.

Выходные данные

Требуется вывести одно число – минимальное расстояние, которое должен проплыть Яша, чтобы выбраться на бортик.

Примеры
Входные данные
23 52 8 43
Выходные данные
8
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Пастбище представляет собой прямоугольник, разбитый на \(N\) x \(N\) клеток. В каждой клетке растет трава, имеющая свою калорийность (во всех клетках калорийность травы разная). В левой нижней клетке стоит корова Мурка. Съев всю траву в своей клетке, она перемещается на одну клетку вправо или на одну клетку вверх, всегда выбирая ту из клеток, калорийность травы в которой больше (за пределами поля трава не растет). В конце концов корова приходит в правую верхнюю клетку. Требуется определить, сколько всего калорий получит корова (считая калории травы в первой и в последней клетках).

Входные данные

Сначала вводится число \(N\) – размер поля (2 ≤ \(N\) ≤ 10). В следующей строке вводятся через пробел числа, задающие количество калорий в клетках верхнего ряда, в следующей – количество калорий в клетках следующего ряда, …, в последней – количество калорий в клетках нижнего ряда. Все числа – различные, натуральные, не превосходящие 100.

Выходные данные

Требуется вывести количество калорий, которое получит корова.

Примеры
Входные данные
2
37 82
23 52
Выходные данные
157

Страница: << 13 14 15 16 17 18 19 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест