Страница: << 1 2 3 4 5 6 7 >> Отображать по:
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes
Карта территории задана таблицей, состоящей из символов. Одна область на карте обозначена специальным символом и является столицей. Требуется найти минимальное количество областей, которые необходимо захватить, чтобы окружить столицу и дойти от границы карты по захваченным областям.

Государство Флатландия представляет собой прямоугольник размером \(M\) × \(N\), состоящий из единичных квадратиков. Флатландия разделена на K провинций (2 <= \(K\) <= 100). Каждая провинция представляет собой связное множество квадратиков, т.е. из каждой точки провинции можно дойти до любой другой ее точки, при этом разрешается переходить с квадратика на квадратик, только если они имеют общую сторону (общей вершины недостаточно). Во Флатландии нет точки, которая граничила бы более чем с тремя провинциями (т.е. четыре квадратика, имеющие общую вершину, не могут принадлежать четырем разным провинциям).

Каждая провинция имеет свой символ. Столица Флатландии находится в провинции, которой принадлежит символ \(A\) (заглавная латинская буква \(A\)). Провинция называется пограничной, если она содержит граничные квадратики. Провинция, в которой находится столица Флатландии, не является пограничной.

Король соседнего с Флатландией королевства Ректилания решил завоевать Флатландию. Для этого он хочет захватить столицу Флатландии. Однако он знает, что сил его армии недостаточно, чтобы сделать это сразу. Поэтому сначала он хочет окружить столичную провинцию, чтобы ослабить силы противника долгой блокадой, а потом захватить столицу.

Чтобы окружить провинцию, требуется захватить все провинции, с которыми она граничит. Две провинции граничат, если существует два квадратика, имеющие общую сторону, один из которых принадлежит первой из них, а другой - второй. Чтобы захватить провинцию, надо чтобы выполнялось одно из двух условий: либо она пограничная, либо граничит с какой-либо уже захваченной провинцией.

Чтобы сберечь силы своей армии, король Ректилании хочет установить блокаду столичной провинции, захватив как можно меньше провинций. Помогите ему выяснить, сколько провинций требуется захватить. Захватывать столичную провинцию нельзя, поскольку для этого сил армии Ректилании пока недостаточно.

Входные данные

В первой строке вводятся числа \(M\) и \(N\) (3 <= \(M\), \(N\) <= 200). Следующие \(M\) строк содержат \(N\) символов каждая и задают карту Флатландии. Символ, находящийся в \(i\) + 1-й строке входных данных на \(j\)-м месте, представляет собой символ провинции, которой принадлежит квадратик (\(i\), \(j\)). Все символы имеют ASCII-код больше 32 (пробела).

Выходные данные

Выведите единственное число - количество провинций, которые требуется захватить. Если установить блокаду невозможно, выведите "-1".

Примеры
Входные данные
3 3
BBB
BAB
BBB
Выходные данные
1
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes
Яблоки в форме окружностей задаются радиусом и верхней точкой. Одно из яблок начинает падать. Если яблоко при падении задевает другое яблоко, то второе также начинает падать. Необходимо определить, какие яблоки упадут.

У Пети в саду растет яблоня. Воодушевленный историей об Исааке Ньютоне, который, как известно, открыл закон всемирного тяготения после того, как ему на голову упало яблоко, Петя с целью повысить свою успеваемость по физике часто сидит под яблоней.

Однако, поскольку по физике у Пети твердая тройка, яблоки с его яблони падают следующим образом. В какой-то момент одно из яблок отрывается от ветки, на которой оно висит, и начинает падать строго вниз. Если в некоторый момент оно задевает другое яблоко, то то тоже отрывается от своей ветки и начинает падать вниз, при этом первое яблоко не меняет направление своего падения. Вообще, если любое падающее яблоко заденет другое яблоко на своем пути, то оно также начнет падать.

Таким образом, в любой момент каждое яблоко либо висит на ветке, либо падает строго вниз, причем все яблоки кроме первого, чтобы начать падать, должны сначала соприкоснуться с каким-либо другим падающим яблоком.

Выясните, какие яблоки упадут с Петиной яблони.

Входные данные

В первой строке вводится число \(N\) - количество яблок на Петиной яблоне (1 <= \(N\) <= 200). Следующие \(N\) строк содержат описания яблок. Будем считать все яблоки шарами. Каждое яблоко задается координатами своей самой верхней точки (той, где оно исходно прикреплено к дереву, длиной черенка пренебрежем) \(x_i\), \(y_i\) и \(z_i\) и радиусом \(r_i\) ( -10000 <= \(x_i\), \(y_i\), \(z_i\) <= 10000, 1 <= \(r_i\) <= 10000, все числа целые). Гарантируется, что изначально никакие яблоки не пересекаются (даже не соприкасаются). Ось OZ направлена вверх.

Выходные данные

В первой строке выведите количество яблок, которые упадут с яблони, если начнет падать первое яблоко. В следующей строке выводите номера упавших яблок. Яблоки нумеруются, начиная с 1, в том порядке, в котором они заданы во входных данных.

Примеры
Входные данные
4
0 0 10 4
5 0 3 1
-7 4 7 1
0 1 2 6
Выходные данные
3
1 2 4 
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes
Заданы две фигуры из закрашенных клеток. Требуется совместить две фигуры так, чтобы образовалась ограниченная фигурами незакрашенная область наибольшего размера.

Андрюше на день рождения подарили хомячка. Пока Андрюша не купил для него клетку, он решил сделать ему клетку из подручных средств. Для изготовления клетки он решил использовать набор кубиков, подаренный ему на прошлый день рождения. Однако, неожиданно выяснилось, что сестра Андрюши склеила кубики суперклеем, и отделить их друг от друга не представляется возможным.

Все кубики оказались склеены в две фигуры. Любые два кубика в каждой из фигур либо не имеют общих точек, либо имеют общую грань, либо имеют общее ребро, но в последнем случае есть кубик, с которым каждый из них имеет общую грань. Каждую фигуру можно положить на стол так, что каждый кубик будет касаться стола одной из своих граней. Теперь Андрюша хочет положить эти две фигуры на стол так, чтобы получилась клетка для хомячка. Фигуры должны быть положены таким образом, чтобы каждый кубик касался стола гранью. Стороны нижних граней кубиков должны быть параллельны сторонам стола. Любые два кубика, принадлежащие различным фигурам, должны либо не касаться друг друга, либо иметь общую грань, либо иметь общее ребро. Фигуры разрешается поворачивать и переворачивать.

Положив фигуры, Андрюша собирается выпустить хомячка на стол. Чтобы он не упал со стола, у него не должно быть возможности добраться от точки, в которую Андрюша его выпустит, до края стола. Хомячок не может перелезать через кубики, и, в частности, не может пролезть между двумя кубиками, имеющими общее ребро. Стол существенно больше каждой из фигур.

Андрюша хочет, чтобы площадь, по которой может бегать хомячок, была как можно больше. Помогите ему выяснить, какая максимальная площадь может быть у территории, до которой сможет добраться хомячок. Площадь грани кубика будем считать равной единице.

Например, две фигуры, показанные на рисунке выше, можно расположить как показано на следующем рисунке. Если выпустить хомячка в точку, отмеченную стрелкой, то доступная ему территория будет иметь площадь, равную четырем.

Входные данные

В первой строке вводятся два числа: \(h_1\) и \(w_1\) (1 <= \(h_1\), \(w_1\) <= 10). Следующие \(h_1\) строк содержат по \(w_1\) символов и описывают первую фигуру, вид сверху. Каждый из этих символов - либо "*" (звездочка), либо "." (точка), звездочка обозначает кубик, а точка – пустое место.

Далее в отдельной строке вводятся два числа: \(h_2\) и \(w_2\) (1 <= \(h_2\), \(w_2\) <= 10). Следующие \(h_2\) строк содержат по \(w_2\) символов и описывают вторую фигуру в формате, аналогичном формату первой. Каждая из фигур связна и содержит хотя бы один кубик.

Выходные данные

Выведите одно число – максимальную площадь, которая может быть доступна хомячку. Если сделать клетку для хомячка невозможно, выведите 0.

Примеры
Входные данные
8 8
........
.***....
..**....
.*****..
...*.*..
...***..
****....
........
8 8
........
........
........
........
*******.
........
........
........
Выходные данные
4
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes

Дима обнаружил у папы на столе специальный чертежный прибор, похожий на циркуль - измеритель. Измеритель отличается от обычного циркуля тем, что в обеих его ножках находятся иголки (у обычного циркуля в одной ножке находится иголка, а в другой - грифель).

Дима взял клетчатый лист бумаги, установил между иглами измерителя некоторое расстояние, прочно зафиксировав его, и начал втыкать измеритель в лист бумаги. Каждый раз Дима втыкал в лист обе иглы измерителя, при этом он всегда делал это так, что дырочки получались в точках пересечениях линий, которыми лист разлинован на клетки. При этом в одну и ту же дырку Дима мог вставлять измеритель несколько раз.

Вечером папа нашел лист, с которым развлекался Дима, и решил выяснить, какое расстояние между иглами измерителя Дима мог установить. Все, что знает папа - координаты дырок, проделанных иглами измерителя. Помогите Папе решить поставленную задачу.

Входные данные

В первой строке вводится число \(n\) - количество дырок (2 <= \(n\) <= 1000). Следующие n строк содержат по два целых числа - координаты дырок. Координаты не превышают \(10^4\) по абсолютной величине.

Выходные данные

В первой строке выведите \(k\) - количество различных расстояний, которые Дима мог установить между иглами измерителя. Следующие k строк должны содержать искомые расстояния, по одному вещественному числу в строке. Расстояния должны быть выведены в возрастающем порядке. Каждое число должно быть выведено с точностью не менее, чем 10-9.

Гарантируется, что существует по крайней мере одно расстояние, которое Дима мог установить между иглами измерителя.

Примеры
Входные данные
4
0 0
1 1
1 0
0 1
Выходные данные
2
1.0
1.4142135623730951
#588
  
Источники: [ Командные олимпиады, ВКОШП, 2000, Задача F ]
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes
Даны кубики с 6 буквами написанными на них и слово. Требуется составить слово из кубиков.

Родители подарили Пете набор детских кубиков. Поскольку Петя скоро пойдет в школу, они купили ему кубики с буквами. На каждой из шести граней каждого кубика написана буква.

Теперь Петя хочет похвастаться перед старшей сестрой, что научился читать. Для этого он хочет сложить из кубиков ее имя. Но это оказалось довольно сложно сделать - ведь разные буквы могут находиться на одном и том же кубике и тогда Петя не сможет использовать обе буквы в слове. Правда одна и та же буква может встречаться на разных кубиках. Помогите Пете!

Дан набор кубиков и имя сестры. Выясните, можно ли выложить ее имя с помощью этих кубиков и если да, то в каком порядке следует выложить кубики.

Входные данные

В первой строке вводится число \(N\) (1 <= \(N\) <= 100) - количество кубиков в наборе у Пети. Во второй строке задано имя Петиной сестры - слово, состоящие только из больших латинских букв, не длиннее 100 символов. Следующие N строк содержат по 6 букв (только большие латинские буквы), которые написаны на соответствующем кубике.

Выходные данные

В первой строке выведите "YES" если выложить имя Петиной сестры данными кубиками можно, "NO" в противном случае.

В случае положительного ответа, во второй строке выведите \(M\) различных чисел из диапазона 1…\(N\), где \(M\) - количество букв в имени Петиной сестры. \(i\)-е число должно быть номером кубика, который следует положить на \(i\)-е место при составлении имени Петиной сестры. Кубики нумеруются с 1, в том порядке, в котором они заданы во входных данных. Если решений несколько, выведите любое. Разделяйте числа пробелами.

Примеры
Входные данные
2
AB
AAAAAB
AAAAAA
Выходные данные
YES
2 1 
Входные данные
3
ANNY
AAAAAA
NNNNNN
YYYYYY
Выходные данные
NO

Страница: << 1 2 3 4 5 6 7 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест