Страница: << 1 2 3 Отображать по:
ограничение по времени на тест
5.0 second;
ограничение по памяти на тест
64 megabytes
В мультиграфе могут добавляться и удаляться ребра. После каждого добавления и удаления необходимо вывести длину максимального пути, такого, что все вершины на пути имеют степень 2 (кроме начальной и конечной)

В некоторой стране есть развитая сеть железных дорог. С доисторических времён и до нашего времени в стране непрерывно происходят военные перевороты, из-за которых в системе железнодорожного транспорта этой страны происходят непрерывные изменения. Дело в том, что во время очередного переворота некоторые дороги разрушаются из-за военных действий, а пока новый правитель некоторое время находится у власти, он восстанавливает часть дорог.

Временами железнодорожная система в этой стране становилась довольно разветвленной, поэтому некоторые города могли быть соединены двумя и более дорогами. Кроме того, дорога могла начинаться и заканчиваться в одном и том же городе, причем для одного города таких дорог могло быть несколько.

Инженер Джио проводит испытания новых сверхскоростных поездов. Поскольку поезда экспериментальные, у них не должно возникать трудностей при проезде через промежуточные города. Поэтому инженер Джио требует, чтобы ни в каком городе на пути поезда, кроме, может быть, начального и конечного, не было развилок. Точнее, из любого промежуточного города на пути поезда должны выходить либо ровно две дороги, ведущие в другие города (возможно, в один и тот же), либо ровно одна дорога, начинающаяся и заканчивающаяся в этом городе.

Естественно, что Джио желает испытать поезд на максимальной возможной скорости, и поэтому после каждого изменения в системе путей он хочет знать максимальную длину пути, по которому может ехать поезд. Поскольку в доисторические времена не умели добывать железо, в начале никаких дорог между городами нет.

Входные данные

В первой строке входного файла находятся целые положительные числа \(n\) (1 ≤ \(n\) ≤ 500) – число городов в стране, и \(m\) (1 ≤ \(m\) ≤ 50 000) – число изменений в железнодорожной системе. В следующих \(m\) строках находится информация об изменениях состояния системы путей. Каждое изменение является либо добавлением дороги, либо удалением дороги. В случае добавления дороги в очередной строке записан ноль, а затем идут три целых числа. Первые два из них являются номерами городов, соединяемых дорогой, а последнее является длиной добавленной дороги. Города нумеруются целыми числам от 1 до \(n\). Длина дороги является целым положительным числом, не превосходящим \(10^6\). В случае удаления дороги в очередной строке сначала записана единица, а затем идёт номер шага, на котором произошло добавление удаляемой дороги. Шаги нумеруются целыми числами, начиная с 1.

Выходные данные

Для каждого изменения системы путей выведите в очередную строку выходного файла символ `*', если после очередного изменения системы путей существует сколь угодно длинный путь, удовлетворяющий условиям, поставленным Джио. В противном случае выведите в выходной файл единственное целое число, являющееся длиной максимального возможного пути.

Примеры
Входные данные
7 10
0 7 6 7
0 6 5 6
0 5 4 5
0 4 3 4
0 3 2 3
0 2 1 2
1 1
1 2
1 3
1 4
Выходные данные
7
13
18
22
25
27
20
14
9
5
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

Город будущего застроен небоскребами, для передвижения между которыми и парковки транспорта многие тройки небоскребов соединены треугольной подушкой из однополярных магнитов. Каждая подушка соединяет ровно 3 небоскреба и вид сверху на нее представляет собой треугольник, с вершинами в небоскребах. Это позволяет беспрепятственно передвигаться между соответствующими небоскребами. Подушки можно делать на разных уровнях, поэтому один небоскреб может быть соединен различными подушками с парами других, причем два небоскреба могут соединять несколько подушек (как с разными третьими небоскребами, так и с одинаковым). Например, возможны две подушки на разных уровнях между небоскребами 1, 2 и 3, и, кроме того, магнитная подушка между 1, 2, 5.

Система магнитных подушек организована так, что с их помощью можно добираться от одного небоскреба, до любого другого в этом городе (с одной подушки на другую можно перемещаться внутри небоскреба), но поддержание каждой из них требует больших затрат энергии.

Требуется написать программу, которая определит, какие из магнитных подушек нельзя удалять из подушечной системы города, так как удаление даже только этой подушки может привести к тому, что найдутся небоскребы из которых теперь нельзя добраться до некоторых других небоскребов, и жителям станет очень грустно.

Входные данные

В первой строке входного файла находятся числа N и M — количество небоскребов в городе и количество работающих магнитных подушек соответственно (3 ≤ N ≤ 100000, 1 ≤ M ≤ 100000). В каждой из следующих M строк через пробел записаны три числа — номера небоскребов, соединенных подушкой. Небоскребы пронумерованы от 1 до N. Гарантируется, что имеющиеся воздушные подушки позволяют перемещаться от одного небоскреба до любого другого.

Выходные данные

Выведите в выходной файл сначала количество тех магнитных подушек, отключение которых невозможно без нарушения сообщения в городе, а потом их номера. Нумерация должна соответствовать тому порядку, в котором подушки перечислены во входном файле. Нумерация начинается с единицы.

Примеры
Входные данные
3 1
1 2 3
Выходные данные
1
1 
Входные данные
3 2
1 2 3
3 2 1
Выходные данные
0
Входные данные
5 4
1 2 3
2 4 3
1 2 4
3 5 1
Выходные данные
1
4 
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes

В одном уездном городе Эн было решено построить собственное метро. Все силы города были мобилизованы на выкапывание станций и прокладку подземных путей дедовскими лопатами.

Вся эта история нас бы совершенно не интересовала, если бы однажды в мэрию города не пришло письмо из далёкой страны Емакира. Оказалось, что компания Alpep подозревает администрацию уездного города в нарушении их патента на jMetro и грозится возбудить против города Эн дело. Согласно патенту, jMetro — это метро, в котором:

  • существует ровно одна узловая станция, в которой начинаются все радиальные линии метро, и это единственная станция, принадлежащая хотя бы двум радиальным линиям;
  • существует ровно одна кольцевая линия, все станции которой лежат на радиальных линиях, причём на каждой радиальной линии лежит ровно одна станция кольцевой линии;
  • кольцевая линия не проходит через узловую станцию;
  • кольцевая линия не проходит через конечные станции радиальных линий.

Поскольку компания Alpep известна своими необоснованными обвинениями в нарушениях патентов, мэрия города хочет проверить правомочность заявления компании.

Входные данные

В первой строке заданы два числа N и M ( 1 ≤ N , M ≤ 2·10 5 ) — количество станций метро и перегонов между ними. Следующие M строк содержат описания перегонов: каждая из них содержит по два числа — номера станций, между которыми есть перегон. По каждому перегону составы могут ездить как в одну, так и в другую сторону. Между любыми двумя станциями существует не более одного перегона. Никакой перегон не соединяет станцию саму с собой.

Выходные данные

Выведите « YES », если метро уездного города Эн нарушает патент jMetro, и « NO » в противном случае.

Примечание

Первый пример соответствует рисунку из условия.

Примеры
Входные данные
15 19
1 4
4 11
2 10
3 2
8 7
7 6
12 10
15 10
11 2
14 9
6 13
7 9
7 11
2 5
8 3
6 10
3 6
11 3
12 3
Выходные данные
YES
Входные данные
5 4
2 1
2 3
2 5
2 4
Выходные данные
NO

Страница: << 1 2 3 Отображать по:
Выбрано
:
Отменить
|
Добавить в контест