Перебор с отсечением(22 задач)
Простые задачи на перебор(43 задач)
Гамильтонов цикл(2 задач)
У меня в прихожей стоят в ряд 20 тапочек – 10 левых и 10 правых. Приходя домой, я переобуваюсь и выбираю два тапочка – левый и правый, в которые мне удобнее всего засунуть ноги. Естественно, что левый тапочек должен стоять левее правого, и расстояние (количество других тапочек) между ними должно быть как можно меньше. Напишите программу, которая вычисляет, сколько же тапочек стоит между теми, которые мне удобнее всего надеть.
Вводится последовательность из 10 нулей и 10 единиц, записанных в некотором порядке. Единица соответствует левому тапочку, 0 – правому тапочку. Числа разделены пробелами.
Программа должна вывести количество тапочек между самыми удобными тапочками, или -1, если таких нет.
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0
Будильник в сотовом телефоне можно настроить так, чтобы он звонил каждый день в одно и то же время, либо в указанное время в определенный день недели. Независимо можно настроить несколько будильников.
По информации о будильниках и текущему времени и дню недели определите, когда прозвонит очередной будильник.
В первой строке вводятся три числа, задающие текущее время: день недели (от 1 до 7), часы и минуты.
Во второй строке вводится одно натуральное число N, не превосходящее 100 – количество будильников.
В следующих N строках вводятся описания N будильников. Описание каждого будильника состоит из трех чисел: дня недели (число от 1 до 7 для понедельника, …, воскресенья, соответственно, 0 – если будильник должен звонить каждый день), часов (от 0 до 23), минут (от 0 до 59).
Выведите через пробел три числа, задающие день недели, часы и минуты, когда прозвонит ближайший будильник.
Комментарий. Во втором примере третий будильник будет звенеть в начальный момент времени.2 10 20 2 1 23 15 0 10 10
3 10 10
7 1 1 3 7 0 59 7 23 59 7 1 1
7 1 1
Разложение на простые множители числа \(12\) можно записать тремя способами:
\(\)12=2\cdot2\cdot3=2\cdot3\cdot2=3\cdot2\cdot2.\(\)
А сколькими способами можно записать разложение на простые множители числа \(N\)?
Вводится одно натуральное число \(N\) (\(2\le N\le 1 000\)).
Выведите одно число – количество различных записей разложения.
12
3
13
1