На новой станции метро, которую планируют открыть в конце этого года, будет N эскалаторов (эскалаторы пронумерованы подряд числами от 1 до N). Эскалаторы имеют длину L и расположены на расстоянии H друг от друга. Шириной эскалатором пренебрежем. Между каждыми двумя соседними эскалаторами (точно посередине) будет установлен ряд ламп. В ряду будет K ламп. Лампы устанавливаются по следующему принципу: всю длину эскалатора L разбивают на K равных отрезков и в середине каждого отрезка устанавливают по лампе (см. рисунок). Всего будет установлено (N–1)*K ламп.
На приведенном рисунке N=4 (эскалаторы показаны жирными <горизонтальными линиями), L=20, H=4, K=5.
Васе удалось проникнуть на эту станцию еще до ее открытия, и даже прокатиться на эскалаторе. Он выбрал эскалатор номер J. Посчитайте, в скольких точках эскалатора (включая его начало и конец) Вася будет видеть не все лампы (так как их будут загораживать другие лампы).
Во входном файле записаны числа N, L, H, K, J. Все числа — натуральные. 2≤N≤35, 1≤L≤1000, 1≤H≤1000, 1≤K≤35, 1≤J≤N.
В выходной файл выведите одно число — ответ задачи.
2 20 4 5 1
0
4 20 4 5 2
11
В Тридевятом Царстве было N городов, некоторые из которых были соединены дорогами. К сожалению, в последнее время добраться из одного города в другой стало очень сложно из-за возникших автомобильных пробок. В целях борьбы с пробками было решено все дороги сделать односторонними, т.е. разрешить проезд по каждой дороге только в одном направлении. При этом требуется, чтобы по-прежнему можно было из любого города попасть в любой другой.
Во входном файле записано сначала число N — количество городов (1≤N≤1000). Затем записано число M — количество дорог (1≤M≤100000). Далее идет M пар чисел, задающих дороги (каждая дорога описывается номерами городов, которые она соединяет). Не бывает дорог из некоторого города в тот же город. Между двумя городами может быть несколько дорог. Гарантируется, что до введения одностороннего движения можно было попасть из любого города в любой другой.
В выходной файл нужно выдать M пар чисел, соответствующих дорогам (дороги должны быть выданы в том же порядке, в котором они заданы во входном файле). Для каждой дороги сначала должен быть записан номер города, из которого по ней можно будет уехать после введения одностороннего движения, а затем — номер города, куда эта дорога ведет.
Если ввести одностороннее движение так, чтобы можно было из любого города попасть в любой другой, нельзя, выходной файл должен содержать одно число 0.
4 6 1 2 1 2 2 3 2 4 4 3 1 4
2 1 2 1 3 2 4 2 4 3 1 4
2 1 1 2
0
Вася и Петя играют в следующую игру. Они берут колоду из 36 карточек. На каждой карточке написано число от 1 до 9 и каждая карточка покрашена в один из 4 цветов так, что есть ровно по 9 карточек каждого цвета и они пронумерованы числами от 1 до 9. Карты перемешиваются, и игрокам раздается по 18 карт.
Дальше игроки по очереди делают ходы. За один ход игрок может выложить на стол одну карточку по следующим правилам. Карточку с цифрой 5 можно выкладывать на стол в любой момент. Карточку с другой цифрой можно выкладывать только если на стол уже выложена карточка того же цвета, на которой написано число на 1 большее или на 1 меньшее, чем на данной карточке (не важно, была ли эта карточка выложена вами или вашим противником, и была ли она выложена на предыдущем ходе или раньше). Если игрок может выложить хоть какую-то карточку, он обязан делать ход. Если ни одну карточку игрок выложить не может, он пропускает ход.
Выигрывает тот, кто первым выложит все свои карточки на стол.
Напишите программу, которая по информации о том, кому какие карточки достались, определяет, кто выиграет при оптимальной игре обоих игроков.
Во входном файле записаны 18 пар чисел, описывающих карточки, которые достались первому игроку. Каждая карточка описывается двумя числами — номером цвета (от 1 до 4) и цифрой, которая написана на карточке (от 1 до 9). Второму игроку, соответственно, достались все остальные карточки.
В выходной файл выведите одно число (1 или 2) — номер игрока, который выиграет при оптимальной игре обоих игроков.
1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9
1
У Васи в распоряжении оказался набор кубиков. Вася решил на каждой грани каждого кубика написать по цифре и дальше использовать кубики для того, чтобы складывать из них числа. Вася хочет написать цифры так, чтобы уметь складывать любое число от 1 до некоторого числа K. Посчитайте такое максимальное K, до которого Вася сможет выкладывать все числа, если в распоряжении у Васи оказалось N кубиков. Заметьте, что если на какой-то грани какого-то кубика написана цифра 6, то эту же грань можно использовать и как цифру 9, просто перевернув соответствующий кубик.
При выкладывании числа Вася не обязан использовать все кубики. Ведущие нули в числах не нужны.
Рассмотрим примеры.
Пусть N=1. Тогда, написав на гранях кубика цифры от 1 до 6, Вася сможет выкладывать числа от 1 до 6. Тем самым, K=6.
Пусть N=2. Тогда, написав на гранях одного кубика цифры от 1 до 6, а на гранях другого цифры 0, 1, 2, 3, 7, 8, Вася сможет выложить любое число от 1 до 43.
Во входном файле записано одно число N (1≤N≤1000000).
В выходной файл выведите максимальное значение K такое, что имея N кубиков Вася может так написать на их гранях цифры, чтобы было возможно выложить любое число от 1 до K.
1
6
2
43
Маршрут автобуса проходит через N остановок (включая конечные). Отдел по исследованию пассажиропотоков записал данные о том, сколько человек выходило и сколько садилось в автобус на каждой остановке. Напишите программу, которая по этим данным определит, какое максимальное количество человек одновременно в этот рейс ехало в автобусе.
Во входном файле записано сначала число N (2≤N≤100) – количество остановок на маршруте. Далее задается количество человек, севших в автобус на конечной. Далее идет (N-2) пары чисел, задающих для промежуточных остановок количество вышедших и количество вошедших пассажиров. Наконец, идет число, задающее количество вышедших из автобуса на конечной остановке.
Количество вошедших пассажиров на каждой остановке не превышало 100. Данные корректны, в частности, суммарное количество вошедших в автобус на всех остановках пассажиров всегда равно суммарному количеству вышедших.
В выходной файл выведите одно целое число — максимальное количество человек, которые в какой-то момент одновременно ехали в автобусе.
Комментарии к примерам тестов
1. На конечной в автобус село 10 человек. Далее 3 вышло и 1 зашел. В автобусе стало 8 человек. На следующей остановке вышло 5 и зашло 10. Стало 13 человек. На последней промежуточной остановке никто не вышел, а зашло 2 человека. На конечной вышло 15 человек. Итого максимальное количество – 15.
2. На конечной село 10 человек, которые на следующей остановке вышли. После этого на следующей остановке никто не сел и никто не вышел. Дальше опять село 10 человек, которые доехали до конечной.
3. С конечной автобус отправился без пассажиров. Дальше в него село 9 человек. На следующей остановке 3 вышли и зашли 4. В автобусе стало 10 человек. На следующей остановке 2 вышли и никто не зашел. 8 человек доехало до конечной. Максимальное количество пассажиров составляло 10
4. На начальной и на промежуточной остановку в автобус село по 100 человек. Вышло из автобуса 200 человек.
5 10 3 1 5 10 0 2 15
15
5 10 10 0 0 0 0 10 10
10
5 0 0 9 3 4 2 0 8
10
3 100 0 100 200
200