---> 4 задач <---
    2003(8 задач)
    2004(9 задач)
    2005(10 задач)
    2006(10 задач)
    2007(19 задач)
    2008(19 задач)
    2009(18 задач)
    2010(18 задач)
    2011(18 задач)
    2012(19 задач)
    2013(19 задач)
    2014(20 задач)
    2015(21 задач)
    2016(20 задач)
Страница: 1 Отображать по:
ограничение по времени на тест
4.0 second;
ограничение по памяти на тест
64 megabytes

По двум однополосным дорогам едут машины. На перекрестке эти дороги сливаются в одну однополосную (машины едут как раз в ее сторону). На этом самом перекрестке стоит постовой милиционер, который регулирует движение, а именно, выбирает, с какой из двух дорог в данный момент машины будут заезжать.

В каждый момент времени либо одна из дорог является "активной", т.е. перекресток проезжают машины с этой дороги, либо регулировщик производит переключение потока на другую дорогу (в этот момент никакие машины через перекресток не едут). На то, чтобы "переключить" поток, тратится время Т.

В некоторый момент образовалась пробка. На 1-й дороге скопилось N машин, а на 2-й — M. Для каждой машины известно время, которое ей потребуется для проезда развилки, если она первая в очереди и ее дорога "активна".

Требуется разработать план действий для постового по переключению потоков, при котором среднее время ожидания машины минимально (временем ожидания машины называется время с момента образования пробки до того момента, когда данная машина заканчивает проезжать перекресток; для вычисления среднего времени суммируются времена ожидания всех машин и полученная сумма делится на общее количество машин). В начальный момент активна первая дорога.

Входные данные

Сначала вводятся числа T, N и M, затем N чисел — времена проезда перекрестка машинами с первой дороги (в порядке удаления от перекрестка), а затем M чисел — времена проезда перекрестка машинами со второй дороги.

<>Все числа  целые неотрицательные, все времена не превосходят 100, T ≤ 100, N, M ≤ 1000, N+M > 0.

Выходные данные

В первой строке  выведите одно число — минимальное среднее время ожидания c точностью 10–3. Далее выводите информацию о машинах в порядке их проезда перекрестка и о переключении потока  следующим образом.

  • Для каждой машины выведите информацию в формате:

Car k from road i

где k — номер машины на своей дороге (ближайшая к перекрестку в момент образования пробки машина имеет номер 1, следующая на той же дороге — 2 и т.д.), i — номер дороги: 1 или 2.

  • Для каждого переключения потока выведите информацию:

Switch road from 1 to 2

для переключения потока с первой дороги на вторую или

Switch road from 2 to 1

для переключения потока со второй дороги на первую.

Информация обо всех событиях (переключениях и проездах через перекресток) должна выводиться именно в том порядке, в котором они происходят.

Если решений несколько, выведите любое из них.

Оценка задачи

1 балл будет набирать решение, верно работающее при N, M ≤ 10.

Примеры
Входные данные
1 2 2
5 6 
1 7 
Выходные данные
11.500
Switch road from 1 to 2
Car 1 from road 2
Switch road from 2 to 1
Car 1 from road 1
Car 2 from road 1
Switch road from 1 to 2
Car 2 from road 2
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes

Вася и Петя играют в следующую игру. Они берут колоду из 36 карточек. На каждой карточке написано число от 1 до 9 и каждая карточка покрашена в один из 4 цветов так, что есть ровно по 9 карточек каждого цвета и они пронумерованы числами от 1 до 9. Карты перемешиваются, и игрокам раздается по 18 карт.

Дальше игроки по очереди делают ходы. За один ход игрок может выложить на стол одну карточку по следующим правилам. Карточку с цифрой 5 можно выкладывать на стол в любой момент. Карточку с другой цифрой можно выкладывать только если на стол уже выложена карточка того же цвета, на которой написано число на 1 большее или на 1 меньшее, чем на данной карточке (не важно, была ли эта карточка выложена вами или вашим противником, и была ли она выложена на предыдущем ходе или раньше). Если игрок может выложить хоть какую-то карточку, он обязан делать ход. Если ни одну карточку игрок выложить не может, он пропускает ход.

Выигрывает тот, кто первым выложит все свои карточки на стол.

Напишите программу, которая по информации о том, кому какие карточки достались, определяет, кто выиграет при оптимальной игре обоих игроков.

Входные данные

Во входном файле записаны 18 пар чисел, описывающих карточки, которые достались первому игроку. Каждая карточка описывается двумя числами — номером цвета (от 1 до 4) и цифрой, которая написана на карточке (от 1 до 9). Второму игроку, соответственно, достались все остальные карточки.

Выходные данные

В выходной файл выведите одно число (1 или 2) — номер игрока, который выиграет при оптимальной игре обоих игроков.

Примеры
Входные данные
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
2 1
2 2
2 3
2 4
2 5
2 6
2 7
2 8
2 9
Выходные данные
1
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes
Необходимо каждый день обедать в кафе. Для каждого дня задана цена обеда. Обедать можно за деньги или за купон. Купон можно получить, пообедав более чем на 100 рублей. Требуется определить способ оплаты, чтобы суммарная цена обедов была минимальна.

Около Петиного университета недавно открылось новое кафе, в котором действует следующая система скидок: при каждой покупке более чем на 100 рублей покупатель получает купон, дающий право на один бесплатный обед (при покупке на сумму 100 рублей и меньше такой купон покупатель не получает).

Однажды Пете на глаза попался прейскурант на ближайшие N дней. Внимательно его изучив, он решил, что будет обедать в этом кафе все N дней, причем каждый день он будет покупать в кафе ровно один обед. Однако стипендия у Пети небольшая, и поэтому он хочет по максимуму использовать предоставляемую систему скидок так, чтобы его суммарные затраты были минимальны. Требуется найти минимально возможную суммарную стоимость обедов и номера дней, в которые Пете следует воспользоваться купонами.

Входные данные

В первой строке входного файла записано целое число N (0≤N≤100). В каждой из последующих N строк записано одно целое число, обозначающее стоимость обеда в рублях на соответствующий день. Стоимость — неотрицательное целое число, не превосходящее 300.

Выходные данные

В первой строке выдайте минимальную возможную суммарную стоимость обедов. Во второй строке выдайте два числа K1 и K2 — количество купонов, которые останутся неиспользованными у Пети после этих N дней и количество использованных им купонов соответственно.

В последующих K2 строках выдайте в возрастающем порядке номера дней, когда Пете следует воспользоваться купонами. Если существует несколько решений с минимальной суммарной стоимостью, то выдайте то из них, в котором значение K1 максимально (на случай, если Петя когда-нибудь ещё решит заглянуть в это кафе). Если таких решений несколько, выведите любое из них.

Примеры
Входные данные
5
35
40
101
59
63
Выходные данные
235
0 1
5
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
6 megabytes

Город N, в отличие от города M, расположен на склоне одного холма. Чистоту улиц этого города обеспечивает единственная поливальная машина. Бензин нынче дорог, поэтому движение муниципального транспорта «в гору» признано слишком расточительным.

Карта города представляет собой прямоугольник, разбитый на H × W клеток, где H и W — высота и ширина карты в клетках соответственно. Часть клеток заняты зданиями, остальные соответствуют улицам и площадям, которые и требуется помыть.

Поливальная машина начинает свой путь в одной из клеток самого верхнего ряда, не занятой зданиями. Она может полить асфальт в текущей клетке и переместиться в любую из двух соседних клеток этого же ряда, не занятых зданиями. Объехать здания, не поднимаясь при этом в гору, невозможно. Поливальная машина также может переместиться в соседнюю по вертикали свободную клетку из нижнего ряда.

Помогите узнать экономному муниципалитету, какое максимальное количество свободных клеток поливальная машина сможет помыть, не поднимаясь при этом в гору? Определите также, какое минимально возможное расстояние ей при этом придётся преодолеть. Считается, что, перемещаясь в соседнюю по горизонтали или вертикали клетку, поливальная машина преодолевает одну единицу расстояния.

Входные данные

В первой строке входного файла находятся натуральные числа H и W — высота и ширина карты города (1 ≤ W ≤ 1 000, 1 ≤ H ≤ 1 000). В следующей строке расположено единственное натуральное число K — номер столбца клетки первой строки, в которой поливальная машина начинает движение (1 ≤ K ≤ W). Гарантируется, что эта клетка свободна от зданий.

Каждая из следующих H строк содержит W символов ‘|#|’ и ‘.’, означающих, соответственно, клетки со зданиями и без.

Выходные данные

Выведите два целых числа — максимальную площадь в клетках, которую может обработать поливальная машина, и минимальное расстояние, которое ей для этого придётся преодолеть.

Примеры тестов

Входные данные
8 8
7
..#....#
##..#...
...#..#.
.##..#..
..#.#...
#.#.#...
#.#...##
##..####
Выходные данные
21 23


Страница: 1 Отображать по:
Выбрано
:
Отменить
|
Добавить в контест