Алгоритмы(1657 задач)
Структуры данных(279 задач)
Интерактивные задачи(17 задач)
Другое(54 задач)
При игре в новую игру (некоторый гибрид боулинга и бильярда) используется N шариков, пронумерованных числами от 1 до N. В начале игры эти шарики должны быть выложены в линию в порядке своих номеров. В процессе игры их порядок может меняться.
Для того, чтобы упорядочить шарики перед началом следующей партии, используется следующее устройство. Это устройство состоит из головки, которая, перемещаясь над шариками, может «засасывать» и «выплевывать» шарики. Чтобы получить большее представление об этом устройстве, представьте себе пылесос, который может засасывать шарики, перемешаться в нужное место, и там, включаясь на продув в обратном направлении, шарики «выплевывать».
При засасывании шарика все шарики, которые находились правее засасываемого, сдвигаются влево. «Выплюнуть» шарик можно между любыми двумя шариками (а также перед первым шариком или после последнего), тогда выплевываемый шарик вставляется между этими шариками, и все шарики, которые находятся правее вставляемого, сдвигаются вправо.
В устройство может быть одновременно засосано больше одного шарика, при этом при выплевывании шарика первым выплевывается последний засосанный шарик, затем - предпоследний и т.д. (т.е. устройство работает по принципу стека). Шарики выплевываются по одному, т.е. можно выплюнуть только один шарик, остальные оставив внутри устройства (при этом дальше можно как продолжать «выплевывать» шарики в том же или в другом месте, так и засасывать новые шарики).
Наиболее энергоемкой из описанных операций является операция засасывания шарика, поэтому хочется минимизировать количество именно таких операций.
Напишите программу, которая по данному начальному расположению шариков определит минимальное количество операций засасывания, которое нужно, чтобы расположить шарики в порядке их номеров.
Во входном файле задано сначала число N — количество шариков (1≤N≤1000). Далее идет N чисел, задающих номера шариков в порядке слева направо в их текущем расположении (каждое число — от 1 до N, и каждое из чисел встречается в последовательности ровно один раз).
В выходной файл выведите одно число — минимальное количество операций засасывания шарика, которое потребуется, чтобы расположить шарики в порядке их номеров.
Комментарии к примерам тестов
1.Можно засосать, например, шарик номер 2 и выплюнуть его между 1-м и 3-м шариком.
2.>Можно действовать, например, так. Сначала засосем шарик номер 1, затем – шарик номер 2. Затем переместимся в начало и перед 4-м шариком выплюнем шарик (это будет шарик номер 2). Дальше засосем шарик номер 3, и выплюнем его между шариками 2 и 4. Дальше переместимся в начало и там выплюнем шарик номер 1. Впрочем, это не единственный возможный вариант упорядочения шариков в этом примере.
3 2 1 3
1
4 4 3 2 1
3
На новой станции метро, которую планируют открыть в конце этого года, будет N эскалаторов (эскалаторы пронумерованы подряд числами от 1 до N). Эскалаторы имеют длину L и расположены на расстоянии H друг от друга. Шириной эскалатором пренебрежем. Между каждыми двумя соседними эскалаторами (точно посередине) будет установлен ряд ламп. В ряду будет K ламп. Лампы устанавливаются по следующему принципу: всю длину эскалатора L разбивают на K равных отрезков и в середине каждого отрезка устанавливают по лампе (см. рисунок). Всего будет установлено (N–1)*K ламп.
На приведенном рисунке N=4 (эскалаторы показаны жирными <горизонтальными линиями), L=20, H=4, K=5.
Васе удалось проникнуть на эту станцию еще до ее открытия, и даже прокатиться на эскалаторе. Он выбрал эскалатор номер J. Посчитайте, в скольких точках эскалатора (включая его начало и конец) Вася будет видеть не все лампы (так как их будут загораживать другие лампы).
Во входном файле записаны числа N, L, H, K, J. Все числа — натуральные. 2≤N≤35, 1≤L≤1000, 1≤H≤1000, 1≤K≤35, 1≤J≤N.
В выходной файл выведите одно число — ответ задачи.
2 20 4 5 1
0
4 20 4 5 2
11
В Тридевятом Царстве было N городов, некоторые из которых были соединены дорогами. К сожалению, в последнее время добраться из одного города в другой стало очень сложно из-за возникших автомобильных пробок. В целях борьбы с пробками было решено все дороги сделать односторонними, т.е. разрешить проезд по каждой дороге только в одном направлении. При этом требуется, чтобы по-прежнему можно было из любого города попасть в любой другой.
Во входном файле записано сначала число N — количество городов (1≤N≤1000). Затем записано число M — количество дорог (1≤M≤100000). Далее идет M пар чисел, задающих дороги (каждая дорога описывается номерами городов, которые она соединяет). Не бывает дорог из некоторого города в тот же город. Между двумя городами может быть несколько дорог. Гарантируется, что до введения одностороннего движения можно было попасть из любого города в любой другой.
В выходной файл нужно выдать M пар чисел, соответствующих дорогам (дороги должны быть выданы в том же порядке, в котором они заданы во входном файле). Для каждой дороги сначала должен быть записан номер города, из которого по ней можно будет уехать после введения одностороннего движения, а затем — номер города, куда эта дорога ведет.
Если ввести одностороннее движение так, чтобы можно было из любого города попасть в любой другой, нельзя, выходной файл должен содержать одно число 0.
4 6 1 2 1 2 2 3 2 4 4 3 1 4
2 1 2 1 3 2 4 2 4 3 1 4
2 1 1 2
0
Вася и Петя играют в следующую игру. Они берут колоду из 36 карточек. На каждой карточке написано число от 1 до 9 и каждая карточка покрашена в один из 4 цветов так, что есть ровно по 9 карточек каждого цвета и они пронумерованы числами от 1 до 9. Карты перемешиваются, и игрокам раздается по 18 карт.
Дальше игроки по очереди делают ходы. За один ход игрок может выложить на стол одну карточку по следующим правилам. Карточку с цифрой 5 можно выкладывать на стол в любой момент. Карточку с другой цифрой можно выкладывать только если на стол уже выложена карточка того же цвета, на которой написано число на 1 большее или на 1 меньшее, чем на данной карточке (не важно, была ли эта карточка выложена вами или вашим противником, и была ли она выложена на предыдущем ходе или раньше). Если игрок может выложить хоть какую-то карточку, он обязан делать ход. Если ни одну карточку игрок выложить не может, он пропускает ход.
Выигрывает тот, кто первым выложит все свои карточки на стол.
Напишите программу, которая по информации о том, кому какие карточки достались, определяет, кто выиграет при оптимальной игре обоих игроков.
Во входном файле записаны 18 пар чисел, описывающих карточки, которые достались первому игроку. Каждая карточка описывается двумя числами — номером цвета (от 1 до 4) и цифрой, которая написана на карточке (от 1 до 9). Второму игроку, соответственно, достались все остальные карточки.
В выходной файл выведите одно число (1 или 2) — номер игрока, который выиграет при оптимальной игре обоих игроков.
1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9
1
У Васи в распоряжении оказался набор кубиков. Вася решил на каждой грани каждого кубика написать по цифре и дальше использовать кубики для того, чтобы складывать из них числа. Вася хочет написать цифры так, чтобы уметь складывать любое число от 1 до некоторого числа K. Посчитайте такое максимальное K, до которого Вася сможет выкладывать все числа, если в распоряжении у Васи оказалось N кубиков. Заметьте, что если на какой-то грани какого-то кубика написана цифра 6, то эту же грань можно использовать и как цифру 9, просто перевернув соответствующий кубик.
При выкладывании числа Вася не обязан использовать все кубики. Ведущие нули в числах не нужны.
Рассмотрим примеры.
Пусть N=1. Тогда, написав на гранях кубика цифры от 1 до 6, Вася сможет выкладывать числа от 1 до 6. Тем самым, K=6.
Пусть N=2. Тогда, написав на гранях одного кубика цифры от 1 до 6, а на гранях другого цифры 0, 1, 2, 3, 7, 8, Вася сможет выложить любое число от 1 до 43.
Во входном файле записано одно число N (1≤N≤1000000).
В выходной файл выведите максимальное значение K такое, что имея N кубиков Вася может так написать на их гранях цифры, чтобы было возможно выложить любое число от 1 до K.
1
6
2
43