Массивы(232 задач)
Типы данных(356 задач)
Циклы(177 задач)
Условный оператор (if)(164 задач)
Python(260 задач)
Standard Template Library(2 задач)
Выполняя очередное задание Министерства образования и сельского хозяйства, программисты Флатландского государственного университета информационных технологий, удобрений и ядохимикатов создали специального робота по прокладке оросительных каналов.
Программа для робота представляет собой последовательность команд. Команды робота приведены в следующей таблице:
Команда | Обозначение | Действия робота |
Перемещение | (X) | Переместиться вперед на X километров, прокладывая за собой оросительный канал |
Поворот налево | L | Повернуть налево на 90o |
Поворот направо | R | Повернуть направо на 90o |
Любая программа начинается и заканчивается командами перемещения и не содержит двух команд перемещения или двух команд поворота подряд.
Исходно робот размещается в некоторой точке поля, на котором требуется создать оросительную систему. После запуска робот последовательно выполняет команды своей программы. Программа считается корректной, если полученный в результате ее выполнения канал не имеет самопересечений или самокасаний.
Программисты университета написали программу и собрались отправить ее по электронной почте в министерство. Однако, в результате поражения сети университета вирусом программа оказалась испорчена. А именно, из нее исчезли все команды перемещения. Теперь программистам требуется восстановить программу. Поскольку времени очень мало, решено было оставить сохранившиеся команды поворота, вставив между ними команды перемещения так, чтобы получившаяся программа была корректной.
Входные данные содержат команды поворота исходной программы в том порядке, в котором они в ней следовали. Каждая команда представляет собой символ «L» либо «R», команды друг от друга не отделяются. Количество команд не превышает 30 000.
Выведите любую корректную программу, последовательность команд поворота в которой совпадает с последовательностью, заданной во входных данных. Параметр X каждой команды перемещения должен быть положительным целым числом и не должен превышать 109. Все команды выведите в одной строке и друг от друга не отделяйте.
LLLRRR
(4)L(3)L(1)L(2)R(2)R(1)R(1)
В одну транспортную компанию поступил заказ на перевозку двух ящиков из одного города в другой. Для перевозки ящики решено было упаковать в специальный контейнер.
Ящики и контейнер имеют вид прямоугольных параллелепипедов. Длина, ширина и высота первого ящика – \(l_1\), \(w_1\) и \(h_1\), соответствующие размеры второго ящика – \(l_2\), \(w_2\) и \(h_2\). Контейнер имеет длину, ширину и высоту \(l_c\), \(w_c\) и \(h_c\).
Поскольку ящики содержат хрупкое оборудование, после упаковки в контейнер каждый из них должен остаться в строго вертикальном положении. Таким образом, ящики можно разместить рядом или один на другом. Для надежного закрепления в контейнере стороны ящиков должны быть параллельны его сторонам. Иначе говоря, если исходно ящики были расположены так, что все их стороны параллельны соответствующим сторонам контейнера, то каждый из них разрешается перемещать и поворачивать относительно вертикальной оси на угол, кратный 90 градусам.
Разумеется, после упаковки оба ящика должны полностью находиться внутри контейнера и не должны пересекаться.
Выясните, можно ли поместить ящики в контейнер с соблюдением указанных условий.
Первая строка входных данных содержит \(l_1\), \(w_1\) и \(h_1\), вторая – \(l_2\), \(w_2\) и \(h_2\), третья – \(l_c\), \(w_c\) и \(h_c\). Все размеры – целые положительные числа, не превышающие 1000. Числа в строках разделены пробелами.
Выведите YES, если ящики можно упаковать в контейнер, и NO в противном случае.
В первых двух примерах ящики можно разместить рядом, при этом во втором один из них следует повернуть на 90 градусов. В третьем примере ящики можно разместить один на другом. В четвертом примере первый ящик слишком высокий и не влезает в контейнер. В пятом примере ящики нельзя разместить ни рядом, ни один на другом.
2 2 3 3 3 3 3 5 3
YES
2 3 3 3 2 3 4 4 4
YES
4 1 2 3 3 2 4 3 4
YES
1 1 4 1 1 3 10 10 3
NO
3 2 2 3 1 2 5 2 3
NO
Недавно Билл устроился на работу полицейским. Теперь ему предстоит каждый вечер обходить свой участок, который представляет собой прямоугольник, состоящий из N×M кварталов. Каждый квартал имеет вид квадрата размером 100×100 метров, кварталы отделены друг от друга прямыми улицами.
Вводятся целые числа N и M, разделенные пробелом (1\( \le\)N, M\( \le\)10 000).
Выведите минимальное время, за которое Билл может совершить обход.
Один из возможных оптимальных путей для Билла во втором примере показан на рисунке.
1 1
4
2 2
16
3 4
38
В одной секретной лаборатории вывели новый вид маленьких монстров, размером чуть больше суслика. В ходе исследований ученые решили поставить следующий эксперимент. В центре комнаты устанавливается прямоугольный стол, поверхность которого разбита на \(N\) х \(M\) клеток размера 1 х 1. В начальный момент времени на некоторых его клетках располагаются монстры, смотрящие параллельно сторонам стола. По команде экспериментатора монстры начинают двигаться по прямой в ту сторону, в которую они смотрят, доходят до края стола и спрыгивают на пол. Там их собирает лаборант Петя и относит в клетку.
В первой строке вводятся числа \(M\) и \(N\) - размеры лабораторного стола (1 <= \(M\), N <= \(10^6\)). В следующей строке задается число \(K\) - количество монстров (0 <= \(K\) <= \(10^3\)). Следующие \(K\) строк содержат описания монстров - два целых числа и один символ из множества {\(N\), \(E\), \(S\), \(W\)} - начальные координаты и направление соответствующего монстра (соответствие направлений и координат приведено на рисунке 1). Символ отделен от чисел ровно одним пробелом.
Выведите единственное число - количество клеток стола, на которых побывают монстры.
Пример соответствует расположению монстров, приведенному на рисунке 1.монстры.
8 5 4 4 4 S 6 2 W 6 3 N 6 4 S
13
В некотором царстве, в некотором государстве было \(N\) городов, и все они, судя по главной карте императора, имели целые координаты. В те годы леса были дремучие, дороги же строить умели только параллельно осям координат, так что расстояние между двумя городами определялось как |\(x_1\) - \(x_2\)| + |\(y_1\) - \(y_2\)|.
Император решил построить \(N\)+1-ый город и сделать его столицей своего государства, при этом координаты столицы также должны быть целыми. Место для столицы следует выбрать так, чтобы среднее арифметическое расстояний между столицей и остальными городами было как можно меньше. Однако, разумеется, столицу нельзя строить на месте существующего города.
Нелегкая задача выбрать место для столицы поручена Вам.
В первой строке вводится число \(N\) - количество городов (1 <= \(N\) <= 100). Следующие \(N\) строк содержат координаты городов - пары целых чисел, не превышающих 1000 по абсолютной величине.
Выведите два целых числа - координаты точки, где следует построить столицу. Если решений несколько, выведите любое.
8 0 0 1 0 2 0 0 1 2 1 0 2 1 2 2 2
1 1
4 0 0 1 1 0 1 1 0
0 -1