Алгоритмы(1657 задач)
Структуры данных(279 задач)
Интерактивные задачи(17 задач)
Другое(54 задач)
В одной секретной лаборатории вывели новый вид маленьких монстров, размером чуть больше суслика. В ходе исследований ученые решили поставить следующий эксперимент. В центре комнаты устанавливается прямоугольный стол, поверхность которого разбита на \(N\) х \(M\) клеток размера 1 х 1. В начальный момент времени на некоторых его клетках располагаются монстры, смотрящие параллельно сторонам стола. По команде экспериментатора монстры начинают двигаться по прямой в ту сторону, в которую они смотрят, доходят до края стола и спрыгивают на пол. Там их собирает лаборант Петя и относит в клетку.
В первой строке вводятся числа \(M\) и \(N\) - размеры лабораторного стола (1 <= \(M\), N <= \(10^6\)). В следующей строке задается число \(K\) - количество монстров (0 <= \(K\) <= \(10^3\)). Следующие \(K\) строк содержат описания монстров - два целых числа и один символ из множества {\(N\), \(E\), \(S\), \(W\)} - начальные координаты и направление соответствующего монстра (соответствие направлений и координат приведено на рисунке 1). Символ отделен от чисел ровно одним пробелом.
Выведите единственное число - количество клеток стола, на которых побывают монстры.
Пример соответствует расположению монстров, приведенному на рисунке 1.монстры.
8 5 4 4 4 S 6 2 W 6 3 N 6 4 S
13
Клуб Юных Хакеров организовал на своем сайте форум. Форум имеет следующую структуру: каждое сообщение либо начинает новую тему, либо является ответом на какое-либо предыдущее сообщение и принадлежит той же теме.
После нескольких месяцев использования своего форума юных хакеров заинтересовал вопрос - какая тема на их форуме наиболее популярна. Помогите им выяснить это.
В первой строке вводится целое число N - количество сообщений в форуме (1 <= \(N\) <= 1000). Следующие строки содержат описание сообщений в хронологическом порядке.
Описание сообщения, которое представляет собой начало новой темы, состоит из трех строк. Первая строка содержит число 0. Вторая строка содержит название темы. Длина названия не превышает 30 символов. Третья строка содержит текст сообщения.
Описание сообщения, которое является ответом на другое сообщение, состоит из двух строк. Первая строка содержит целое число - номер сообщения, ответом на которое оно является. Сообщения нумеруются, начиная с единицы. Ответ всегда появляется позже, чем сообщение, ответом на которое он является. Вторая строка содержит текст сообщения.
Длина каждого из сообщений не превышает 100 символов.
Выведите название темы, к которой относится наибольшее количество сообщений. Если таких тем несколько, то выведите первую в хронологическом порядке
2 0 topic 1 body of message 1 0 topic 2 body of message 2
topic 1
2 0 topic 1 body of message 1 1 body of message 2 being the reply to message 1
topic 1
В одном государстве имеется \(N\) городов. Некоторые города соединены дорогами, причем для любых двух городов \(A\) и \(B\) выполняется следующее свойство: существует ровно один способ попасть из города \(A\) в город \(B\) если можно перемещаться только по дорогам и не разрешается проезжать по одной и той же дороге более одного раза.
Недавно президента этой страны заинтересовал вопрос: какие три города являются наиболее удаленными друг от друга. А именно, назовем взаимной удаленностью друг от друга трех городов \(A\), \(B\) и \(C\) минимальное количество дорог, которое необходимо использовать, чтобы доехать от \(A\) до \(B\), затем от \(B\) до \(C\) и затем от \(C\) до \(A\) (при этом разрешается использовать одну и ту же дорогу в различных путешествиях).
Требуется найти три города, для которых взаимная удаленность друг от друга будет максимальной.
Например, для пяти городов, соединенных дорогами так, как это показано на рисунке 1, три наиболее удаленных друг от друга города - это города 1, 2 и 5 (взаимная удаленность равна 2 + 3 + 3 = 8), а для городов на рисунке 2 - это любые три города, выбранные из множества {1, 2, 4, 5} (удаленность 2 + 2 + 2 = 6).
В первой строке вводится число \(N\) - количество городов (3 <= \(N\) <= 1000). Следующие N строк содержат описания городов. Описание i-го города сначала содержит \(K_i\) - количество городов, с которыми он соединен дорогами (1 <= \(K_i\) < \(N\)), а затем \(K_i\) чисел - номера городов, с которыми он соединен. Гарантируется, что входные данные корректны - то есть если есть дорога из города A в город B, то есть и дорога из города B в город A, причем для всех пар городов выполняется свойство, указанное в условии задачи.
Выведите три различных числа - номера трех наиболее удаленных друг от друга городов в произвольном порядке. Если решений несколько, выведите любое из них
5 1 3 1 3 3 1 2 4 2 3 5 1 4
5 2 1
5 1 3 1 3 4 1 2 4 5 1 3 1 3
1 2 4
Издательская система LATEX предназначена для верстки сложных научно-технических текстов с большим количеством формул. Исходный файл для системы LATEX пишется на языке TEX и представляет собой текст документа, в который включены специальные символы и команды. Специальные символы и команды описывают размещение текста, в частности в математических формулах. Команда представляет собой последовательность латинских букв (регистр важен), перед которой стоит символ &lquot;\&rquot;. Так, команда \frac предназначена для описания дроби, в которой числитель расположен над знаменателем. Рассмотрим простейшую структуру команды \frac.
Команда \frac имеет два параметра — числитель и знаменатель. Перед самой командой не обязательно ставить пробел. Следом за ключевым словом frac записываются числитель и знаменатель. Если числитель и знаменатель имеют длину более одного символа, они заключаются в фигурные скобки. Если числитель или знаменатель записываются одной буквой или цифрой, их можно не брать в фигурные скобки. Если числитель записывается одним символом, то он отделяется от \frac хотя бы одним пробелом. Если знаменатель записывается одним символом, то он не отделяется пробелом от числителя. Произвольное ненулевое количество пробелов считается синтаксически эквивалентным одному пробелу. Нельзя разделять пробелами на части ключевое слово \frac.
Дадим также формальное определение выражения для нашей задачи:
<выражение> ::= <элемент> | <элемент><выражение>
<элемент> ::= <дробь> | "{" <выражение> "}" | <другой математический элемент>
<дробь> ::= "\frac" <тело дроби>
<тело дроби> ::= <числитель><знаменатель>
<числитель> ::= <пробелы><непробельный символ> | [<пробелы>] "{" <выражение> "}"
<знаменатель> ::= <непробельный символ> | [<пробелы>] "{" <выражение> "}"
<другой математический элемент> ::= произвольная последовательность печатных символов, не содержащая фигурных скобок и подстроки "\frac"
<пробелы> ::= " " | " " <пробелы>
<непробельный символ> ::= произвольный печатный символ, за исключением " ", "", "{" и "}"
Здесь вертикальная черта | означает "или", заключенная в квадратные скобки часть может отсутствовать, а символы, записанные в кавычках обозначают самих себя. Печатный символ - любой символ с ASCII кодом от 32 (пробел) до 127.
Например, выражение
В первой строке вводятся целые положительные числа \(S\) и \(D\) (1 <= \(S\), \(D\) <= 10000). Следующая строка содержит описание формулы на TEX-е, длина строки не более 200 символов. Гарантируется, что формула синтаксически корректна, то есть фигурные скобки образуют правильную скобочную последовательность и строка содержит только печатные символы. Все символы "", встречающиеся в строке относятся к некоторой командной последовательности (не обязательно \frac), можете считать, что все прочие командные последовательности задают символы, высота которых равна \(S\). Числитель и знаменатель каждой дроби содержат хотя бы по одному символу, вся формула содержит хотя бы один символ.
Выведите единственное число - высоту формулы.
10 2 \frac{a+b}{d+1}+\frac ax -\frac 2 {2+\frac{3}{y}}
34
10 2 no fractions here
10
10 2 \frac {\alpha} {\beta+\sin{2+x}}
22
10 2 \cos{\frac{\alpha}b}
22
10 2 \frac a {sin{a}}
22
10 2 \frac{a+b}{\frac cd}+\frac{\frac ef}{g+h}
46
10 2 \frac{a+b+c}{\frac{\frac de}{g+h}}+\frac{i+j+k}{\frac{l+m}{\frac no}}
46
В некотором царстве, в некотором государстве было \(N\) городов, и все они, судя по главной карте императора, имели целые координаты. В те годы леса были дремучие, дороги же строить умели только параллельно осям координат, так что расстояние между двумя городами определялось как |\(x_1\) - \(x_2\)| + |\(y_1\) - \(y_2\)|.
Император решил построить \(N\)+1-ый город и сделать его столицей своего государства, при этом координаты столицы также должны быть целыми. Место для столицы следует выбрать так, чтобы среднее арифметическое расстояний между столицей и остальными городами было как можно меньше. Однако, разумеется, столицу нельзя строить на месте существующего города.
Нелегкая задача выбрать место для столицы поручена Вам.
В первой строке вводится число \(N\) - количество городов (1 <= \(N\) <= 100). Следующие \(N\) строк содержат координаты городов - пары целых чисел, не превышающих 1000 по абсолютной величине.
Выведите два целых числа - координаты точки, где следует построить столицу. Если решений несколько, выведите любое.
8 0 0 1 0 2 0 0 1 2 1 0 2 1 2 2 2
1 1
4 0 0 1 1 0 1 1 0
0 -1