Темы --> Информатика --> Алгоритмы --> Алгоритмы на графах
    Кратчайшие пути в графе(116 задач)
    Обход в глубину(100 задач)
    Способы задания графа(54 задач)
    Минимальный каркас(12 задач)
    Потоки(21 задач)
    Паросочетания(17 задач)
    Эйлеров цикл(9 задач)
    Деревья(16 задач)
---> 2 задач <---
Страница: 1 Отображать по:
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

На родной планете Чубакки растет очень большое дерево, на ветках которого вуки строят свои домики. Чубакке стало интересно, как быстро можно попасть из некоторых домиков в другие. Вам придется ответить на несколько его вопросов, чтобы он вас отпустил.

Вам дано дерево с N вершинами порядка K , то есть каждая вершина дерева может иметь не более K потомков. Дерево создано по принципу "минимальной энергии": вершины в нем располагается на новом уровне только тогда, когда все места на предыдущем уровне (слева направо) заняты. В таком же порядке вершины дерева пронумерованы, начиная с 1.

Вам необходимо ответить на Q запросов вида " x y ", где ответом является расстояние (количество ребер в минимальном пути) в данном дереве между вершинами с номерами x и y .

Входные данные

Первая строка содержит три целых числа: N ( 1 ≤ N ≤ 10 15 ), K ( 1 ≤ K ≤ 1000 ) и Q ( 1 ≤ Q ≤ 100000 ). Каждая из следующих Q строк содержит пару чисел x y ( 1 ≤ x , y N , x y ) - запросы, описанные в условии.

Выходные данные

Выведите Q строк, в каждой из которых одно целое число - ответ на соответствующий запрос.

Примечание

Решения, работающие при 1 ≤ N , Q ≤ 1000 , будут оцениваться в 20 баллов. Решения, работающие при 1 ≤ N , Q ≤ 100000 , будут оцениваться в 50 баллов.

Примеры
Входные данные
7 2 3
1 2
2 1
4 7
Выходные данные
1
1
4
Входные данные
9 3 3
8 9
5 7
8 4
Выходные данные
2
2
3
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Давным-давно в одной далекой-далекой галактике, было N планет. Также было N - 1 межпланетных магистралей, соединявших между собой все планеты (не обязательно напрямую). Иными словами, сеть планет и магистралей образовывала дерево. Кроме того, каждая магистраль имеет свой показатель интересности, заданный неотрицательным целым числом. Пара планет ( A , B ) называется скучной, если выполняются следующие условия:

1. A и B - различные планеты.

2. В действующей сети межпланетных магистралей существует путь между A и B .

3. Побитовый XOR показателей интересности всех магистралей в этом пути равен 0.

Ныне в галактике правит злой император, и он планирует использовать Силу, чтобы уничтожить все межпланетные магистрали в определенном порядке. Для того, чтобы спасти вселенную от гибели, вам необходимо определить количество пар скучных планет и после каждого разрушения вновь подсчитывать эту величину.

Входные данные

Первая строка содержит одно целое число N ( 1 ≤ N ≤ 100000 ). Каждая из следующих N - 1 строк содержит три целых числа A i , B i , Z i ( 1 ≤ A i , B i ≤ 100000 , 0 ≤ Z i ≤ 1000000000 ), которые означают, что планеты с номерами A i и B i соединены магистралью с показателем интересности Z i . Последняя строка содержит N - 1 число: перестановку натуральных чисел от 1 до N - 1 , отражающую порядок уничтожения магистралей (если i -е число в строке равно j , то император уничтожит дорогу между планетами A j и B j на i -м шаге).

Выходные данные

Выведите N строк, в k -й строке выведите одно число - количество пар скучных планет после уничтожения k - 1 дорог.

Примечание

Решения, работающие при N ≤ 1000 , будут оцениваться в 20 баллов. Решения, работающие в случае когда показатель интересности всех путей равен 0, будут оцениваться не менее чем в 30 баллов.

Примеры
Входные данные
2
1 2 0
1
Выходные данные
1
0
Входные данные
3
1 2 4
2 3 4
1 2
Выходные данные
1
0
0
Входные данные
4
1 2 0
2 3 0
2 4 0
3 1 2
Выходные данные
6
3
1
0

Страница: 1 Отображать по:
Выбрано
:
Отменить
|
Добавить в контест