---> 17 задач <---
Источники
    Личные олимпиады(938 задач)
    Командные олимпиады(684 задач)
Страница: 1 2 3 4 >> Отображать по:
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes
Максимальное время работы на одном тесте: 1 секунда

Пусть дана перестановка π. Обозначим φ[i] - количество таких j, что π[j] > π[i], а j < i. φ называется таблицей инверсий перестановки π. Требуется по данной таблице инверсий восстановить перестановку.

Входные данные

В первой строке входных данных содержится число 0 < N <= 2000 - количество чисел в перестановке π. Во второй строке записана таблица инверсий φ.

Выходные данные

Выведите искомую перестановку  π.

Примеры
Входные данные
3
0 0 2
Выходные данные
2 3 1 
ограничение по времени на тест
0.5 second;
ограничение по памяти на тест
64 megabytes

Том Сойер получил важное задание по покраске забора. Забор состоит из n досок. Он когда-то был покрашен, однако с некоторых участков забора краска облупилась. Эти доски Тому и необходимо покрасить. Так как забор большой, пришлось подвезти к забору целую цистерну с краской. Цистерна была помещена у края забора и не может перемещаться. У Тома есть ведерко, набрав краски в которое, Том может покрасить \(k\) досок забора. При этом Том может в любой момент вернуться за краской к цистерне.

Изначально Том находится у цистерны. Соседние доски находятся на расстоянии 1 фута друг от друга, цистерна находится на расстоянии 1 фута от первой доски. По окончании работы Том должен положить кисточку и ведерко на свою исходную позицию рядом с цистерной.

Требуется выяснить, какое минимальное расстояние Тому необходимо пройти, чтобы покрасить забор.

Входные данные

Первая строка входного файла содержит количество досок в заборе \(n\) (1 ≤ \(n\) ≤ \(10^9\)) и вместимость ведерка \(k\) (1 ≤ \(k\) ≤ 100). Во второй строке содержится количество неокрашенных отрезков забора \(m\) (1 ≤ \(m\) ≤ 50). Далее следуют \(m\) строк, в каждой из которых описан один неокрашенный отрезок. Отрезок описывается своей левой границей \(l_i\) и правой границей \(r_i\) (1 ≤ \(l_i\) ≤ \(r_i\) ≤ \(n\)). Такое описание означает, что не покрашены \(l_i\)-я, (\(l_i\)+1)-я, …, (\(r_i\)–1)-я, \(r_i\)-я доски забора (доски нумеруются от 1 до \(n\)). Гарантируется, что неокрашенные отрезки, заданные во входном файле, не пересекаются.

Выходные данные

Выведите одно число — минимальное расстояние в футах, которое необходимо пройти Тому для выполнения своего ответственного задания.

Примеры
Входные данные
5 2
2
1 2
5 5
Выходные данные
12
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes
Нерабочими называются выходные, а также праздники: 23 февраля, 8 марта и K первых дней года. Праздник попавшие на выходные, переносятся. По заданному K требуется определить максимальное количество подряд идущих нерабочих дней.

Парламент некоторой страны принял новый закон о праздничных днях. Согласно этому закону первые K дней года, а также 23 февраля (День олимпиады по информатике) и 8 марта объявляются праздничными, а все остальные праздники отменяются. При этом все выходные (суббота и воскресенье), попавшие на праздничные дни, переносятся на следующие за этими праздниками рабочие дни.

В зависимости от того, на какой день недели приходится 1 января, количество нерабочих дней, которые идут подряд, может меняться.

Требуется определить, какое наибольшее количество нерабочих дней может идти подряд.

Входные данные

На вход подается единственное число K (1≤K≤50).

Выходные данные

Требуется вывести единственное число — наибольшее количество нерабочих дней, идущих подряд.

Примеры
Входные данные
2
Выходные данные
4
Входные данные
10
Выходные данные
16
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes

Император ацтеков Куитлауак собирается построить пирамиду в свою честь. Эта пирамида должна быть выше, чем все предыдущие.

Ацтекская пирамида состоит из каменных блоков. Каждый блок это куб размерами 1 × 1 × 1. Куитлауак располагает первый блок на земле в процессе церемонии закладки пирамиды. Каждый следующий блок должен иметь общую грань с каким-нибудь из предыдущих блоков.

Правильные расположения блоков: Неправильные расположения блоков:

Блок считается устойчивым, если он стоит на земле или на блоке, каждая грань которого соседствует с другим блоком или с землей. Чтобы пройти испытание временем, пирамида должна быть устойчивой, то есть все её блоки должны быть устойчивыми.

Устойчивые блоки: Неустойчивые блоки:

Куитлауак просит вас определить высоту самой высокой пирамиды, которую можно построить из имеющихся в наличии блоков.

Входные данные

Единственная строка входного файла содержит одно целое число n — количество имеющихся в наличии блоков, считая заложенный императором (1 ≤ n ≤ 109).

Выходные данные

Выведите одно целое число — высоту самой высокой пирамиды, которую можно построить из имеющихся в наличии блоков.

Примеры тестов

Входные данные
6
Выходные данные
2
Входные данные
5
Выходные данные
1
Входные данные
20
Выходные данные
3

ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes

Скоро в Берляндии пройдет очередная Олимпиада. В рамках подготовки к этому важному мероприятию Берляндолимпстрой уже возвел N объектов и теперь хочет разобраться с тем, во сколько Берляндии это обошлось.

Стройка длилась \(K + 1\) день со дня номер \(0\) по день номер \(K\), причем стоимость j-го объекта в нулевой день была равна \(a_j\) бурлям. Однако каждый следующий день стоимость каждого объекта увеличивалась согласно следующему правилу: стоимость j-го объекта в i-й день становилась равна сумме стоимостей всех объектов с номерами, меньшими или равными j, в предыдущий день. Иначе говоря, \(S_{i,j}\) = \(\sum_{m=1}^{j} S_{i-1,m}\), где \(S_{i,j}\) — стоимость j-го объекта в i-й день. В итоге на j-й объект было потрачено \(S_{K,j}\) , то есть его стоимость в последний \(K\)-й день. \t{Назовем эту величину итоговой стоимостью j-го объекта.}

Такие увеличения стоимостей проектов для Берляндии не редкость, однако оказалось, что и этих денег не хватило! Выяснилось, что в некоторый день i > 0 стоимость некоторого объекта j дополнительно повысилась на пока не известную следователям сумму X (то есть \(S_{i,j}\) = \(\sum_{m=1}^{j} S_{i-1,m}\) + X), что повлияло на стоимости объектов в последующие дни. Следователи выяснили, что из-за этого сумма итоговых стоимостей всех объектов увеличилась на \(R\) бурлей.

Помогите следователям выяснить минимально возможное значение X.

Входные данные

В первой строке входного файла содержатся три целых числа \(N\), \(K\), \(R\): количество олимпийских объектов (\(1 \le N \le 10^5\) ), количество дней увеличения стоимости объектов (\(1 \le K \le 10^5\) ) и количество бурлей, на которое незаконно возросла итоговая сумма (\(1 \le R \le 10^{18}\)). В следующей строке входного файла содержатся N целых чисел \(a_i\) — стоимости объектов в нулевой день (\(1 \le a_i \le 10^9\)).

Выходные данные

Единственная строка выходного файла должна содержать единственное целое число — минимально возможное значение \(X\)

Система оценки

Тесты к этой задаче состоят из четырех групп.

0. Тест 1. Тест из условия, оцениваемый в ноль баллов.

1. Тесты 2—25. В тестах этой группы \(N \le 10, K \le 10, a_i \le 10\), искомое значение \(X\) не превосходит \(10\). Эта группа оценивается в 30 баллов, баллы начисляются только при прохождении всех тестов группы.

2. Тесты 26—38. В тестах этой группы \(N \le 1 000, K \le 1 000\). Эта группа оценивается в 30 баллов, баллы начисляются только при прохождении всех тестов группы. Решение будет тестироваться на тестах этой группы только в случае прохождения всех тестов первой группы.

3. В тестах этой группы дополнительные ограничения отсутствуют. Эта группа оценивается в 40 баллов. Тесты в этой группе оцениваются \t{независимо}

Примеры
Входные данные
3 3 12
1 3 3
Выходные данные
2

Страница: 1 2 3 4 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест