Темы --> Информатика
    Язык программирования(952 задач)
    Алгоритмы(1657 задач)
    Структуры данных(279 задач)
    Интерактивные задачи(17 задач)
    Другое(54 задач)
---> 2656 задач <---
Источники
    Личные олимпиады(938 задач)
    Командные олимпиады(684 задач)
Страница: << 224 225 226 227 228 229 230 >> Отображать по:
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes
Требуется перевернуть слова, состоящие из латинских букв, не трогая остальные.

Дан текст, состоящий из слов, знаков препинания и других символов. Словом в тексте считается последовательность символов из прописных и строчных букв латинского алфавита. Требуется перевернуть (записать в обратном порядке) все слова текста, оставив знаки препинания и другие символы, включая буквы русского алфавита, без изменений. В строке не более 255 символов, строк в файле не более 1000.

Примеры
Входные данные
Thisisveryveryverylongword
Выходные данные
drowgnolyrevyrevyrevsisihT
Входные данные
This test is very! easy and short.
But it's  ,. mo:re difficult than first.
Выходные данные
sihT tset si yrev! ysae dna trohs.
tuB ti's  ,. om:er tluciffid naht tsrif.
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes
Блохи сидят на клетках шахматного поля и ходят конем. Должны собраться в одной из клеток. Определить сумму длин кратчайших путей.

На клеточном поле, размером \(N\)x\(M\) (2 ≤ \(N\), \(M\) ≤ 250) сидит \(Q\) (0 ≤ \(Q\) ≤ 10000) блох в различных клетках. "Прием пищи" блохами возможен только в кормушке - одна из клеток поля, заранее известная. Блохи перемещаются по полю странным образом, а именно, прыжками, совпадающими с ходом обыкновенного шахматного коня. Длина пути каждой блохи до кормушки определяется как количество прыжков. Определить минимальное значение суммы длин путей блох до кормушки или, если собраться блохам у кормушки невозможно, то сообщить об этом. Сбор невозможен, если хотя бы одна из блох не может попасть к кормушке.

Входные данные

В первой строке входного файла находится 5 чисел, разделенных пробелом: \(N\), \(M\), \(S\), \(T\), \(Q\). \(N\), \(M\) - размеры доски (отсчет начинается с 1); \(S\), \(T\) - координаты клетки - кормушки (номер строки и столбца соответственно), \(Q\) - количество блох на доске. И далее \(Q\) строк по два числа - координаты каждой блохи.

Выходные данные

Содержит одно число - минимальное значение суммы длин путей или -1, если сбор невозможен.

Примеры
Входные данные
2 2 1 1 1
2 2
Выходные данные
-1
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes
Заданы две последовательности чисел: объем продукции и процент брака. Требуется найти наибольшую подпоследовательность, в которой объем продукции растет, а процент брака падает.

Один из цехов завода производит продукцию в течение \(N\) месяцев. Начальнику цеха было поручено составить отчет о росте производительности данного цеха и об уменьшении доли некачественной продукции в процентном соотношении (точность доли процента до одного знака после запятой, например, 2/7=0.(285714) ≈ 28.6%). При этом в отчет должна войти информация как можно за большее число месяцев \(K\) (\(K\) ≤ \(N\)) работы цеха. Начальник цеха решил, что он включит в отчет данные только по тем месяцам (не обязательно взятым подряд, но обязательно в хронологическом порядке), по которым наблюдается строгий рост количества производимой продукции и строгий спад доли бракованных товаров по сравнению с данными предыдущего месяца, вошедшего в отчет. Определить, какое максимальное количество месяцев удовлетворяет этим условиям и сколько есть возможных вариантов составления отчета.

Входные данные

Первая строка файла содержит число \(N\) (1 ≤ \(N\) ≤ 40) - количество месяцев работы цеха. Далее следует N строк, содержащих целые числа \(v_i\) (1 ≤ \(v_i\) ≤ 10000) и \(b_i\) (1 ≤ \(b_i\) ≤ \(v_i\)); \(v_i\) - объем продукции, произведенной цехом за \(i\)-ый месяц; \(b_i\) - количество бракованной продукции в \(i\)-ом месяце.

Выходные данные

Первая строка файла содержит число \(K\) - количество месяцев, по которым будет включена в отчет информация о работе цеха. Вторая строка содержит число \(P\) - количество возможных вариантов составления отчета с максимальным содержанием.

Примеры
Входные данные
10
313 100
313 106
442 106
442 104
475 104
475 102
539 102
539 109
682 109
682 111
Выходные данные
5
32
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes
Требуется выполнять две операции: прибавить к ячейке X число Y и определять сумму с L по R.

Секретная корпорация, занимающаяся поиском инопланетных жизненных форм обнаружила на одной из планет созвездия Альфа удивительные живые организмы (даже не плоские, а одномерные). Она приняла решение вести наблюдение за развитием и изменением численности организмов, с этой целью на орбиту планеты был послан спутник - наблюдатель, который мог следить за изменениями численности организмов. Недостаток этого "наблюдателя" в том, что он может отслеживать изменения только на той территории планеты, которая находиться непосредственно под ним.

С этой целью его траектория была разбита на равные интервалы. Они пронумерованы от 1 до N. По запросу с Земли о количестве живых форм в интервале с L по R (LR) - спутник должен, пролетая над ними (L, L+1, …,R-1, R интервалами) произвести подсчет и затем, в ответ на запрос, отправить полученные данные. Но количество организмов постоянно изменяется: в некоторое время в X интервале на Y единиц.

Помогите написать программу для спутника, которая будет отвечать на запросы и отслеживать количество единиц жизни в каждом интервале.

Формат входных данных

Во входном файле первым записано число N (1 ≤ N ≤ 213 = 8192). Затем записана последовательность событий:

Событие

Параметры

Описание

1

X, Y

Изменение количества организмов в интервале с номером X на Y единиц.(-215 ≤ Y ≤ 215-1 = 32767)

2

L, R

Запрос суммарного количества организмов с L по R интервал.

0

  

Завершение работы.

Количество событий не превосходит 100000.

Формат выходных данных

В выходной файл записывать только ответы на запросы.

Примеры

Входные данные

Выходные данные

2

1 1 4

2 1 1

2 1 1

0

4

4


4

2 1 4

1 1 3

1 4 2

2 2 4

2 1 2

1 4 -2

1 2 8

2 1 4

0

0

2

3

11


ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

В королевстве Его Величества Короля Бубея Второго приняты шестизначные автомобильные номера, состоящие только из цифр. Руководство Королевской Секретной Службы пожелало придумать особенные номера для своих сотрудников, чтобы они могли узнать «своих» среди обычных граждан. Было предложено, чтобы номер машины сотрудника Секретной Службы содержал только цифры от 1 до 6. При этом цифры номера должны подчиняться такой закономерности:

1) первые три цифры номера могут быть какими угодно (при условии, что это не цифры 0, 7, 8, или 9);

2) четвертая цифра в сумме с третьей должна давать 7;

3) пятая цифра в сумме со второй должна давать 7;

4) шестая цифра в сумме с первой должна давать 7.

Однако, у руководства Дорожной Службы возникла проблема: они уже успели отпечатать и раздать гражданам первые \(N\) номеров. Определите, у скольких граждан необходимо изъять номера в пользу Секретной Службы, а им самим выдать новые?

Входные данные

вводится единственное число \(N\) (положительное, не превышает \(10^6\)) – количество номеров, которые уже розданы гражданам страны. Обратите внимание: номера начинаются с «000000», затем «000001», затем «000002» и т.д.

Выходные данные

выведите количество уже выданных номеров, которые необходимо обменять у обычных граждан.

Примеры
Входные данные
620775
Выходные данные
186
Входные данные
580447
Выходные данные
180

Страница: << 224 225 226 227 228 229 230 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест