Алгоритмы(1657 задач)
Структуры данных(279 задач)
Интерактивные задачи(17 задач)
Другое(54 задач)
Переведите каждого из двух коней из одной клетки в другую за наименьшее общее число ходов. Два коня не могут одновременно находиться в одной клетке. Ходы коней должны чередоваться.
Во входном файле записаны координаты первого и второго коня, затем координаты клеток, куда нужно их переместить.
Программа должна вывести последовательность ходов коней в виде нескольких строк. Первым символом в строке должен быть номер коня (1 или 2), затем, через пробел, координаты клетки, в которую он переставляется. Необходимо вывести любое из возможных оптимальных решений. Кони должны ходить по очереди, первым может ходить любой из коней, кони могут сделать различное число ходов.
a1 c2 c2 a1
1 b3 2 a1 1 d4 2 b3 1 c2 2 a1
Как-то раз гному Кварку попала в руки карта сокровищ. На карте отмечено \(N\) точек, в которых может находиться клад. Все точки пронумерованы числами от \(1\) до \(N\). Для каждой пары точек Кварк знает длину дороги, их соединяющей. Свои поиски Кварк начинает от точки с номером \(1\). Прежде чем начать свой долгий путь, хитрый гном вычеркивает точки, в которых, по его мнению, клада быть не может. Гарантируется, что точка с номером \(1\) никогда не бывает вычеркнута. После этого Кварк выбирает некоторый маршрут, проходящий через все оставшиеся на карте точки. Маршрут не проходит через одну и ту же точку более одного раза. Кварк может ходить только по дорогам, соединяющим невычеркнутые точки.
Кварк хочет выбрать маршрут минимальной длины. Необходимо найти такой маршрут для Кварка.
В первой строке находится одно целое число \(N\) \((1 \lt N \le 15)\) — количество точек, отмеченных на карте. В последующих \(N\) строках находятся расстояния между точками. В \((i + 1)\)-й строке находятся \(N\) целых чисел \(d_{i1},\, d_{i2},\, \ldots,\, d_{iN}\) — длины дорог от \(i\)-й точки до всех остальных. Гарантируется, что \(d_{ij} = d_{ji}\), \(d_{ii} = 0\) и \(0 \lt d_{ij} \lt 100\). В \((N + 2)\)-й строке находится одно целое число \(Q\) \((1 \lt Q \le 1000)\) — количество вариантов вычеркивания точек для данной карты. В последующих \(Q\) строках содержится описание вариантов вычеркивания. Описание начинается с числа \(C\) \((0 \le C \lt N)\) — количества точек, в которых, по мнению Кварка, клада быть не может. Следующие \(C\) чисел задают номера этих точек.
Выведите \(Q\) строк. В каждой строке выведите одно целое число — длину минимального маршрута при соответствующем варианте вычеркивания точек.
3 0 45 10 45 0 30 10 30 0 2 0 1 3
40 45
5 0 14 20 17 14 14 0 15 19 18 20 15 0 15 16 17 19 15 0 14 14 18 16 14 0 2 3 5 4 3 0
14 58
Петя и Маша пришли в зоопарк. Больше всего Пете понравились цапли. Он был поражен их способностью спать на одной ноге.
В вольере находятся несколько цапель. Некоторые из них стоят на двух ногах, некоторые — на одной. Когда цапля стоит на одной ноге, то другую ее ногу не видно. Петя пересчитал видимые ноги всех цапель, и у него получилось число a.
Через несколько минут к вольеру подошла Маша. За это время некоторые цапли могли поменять позу, поэтому Петя предложил ей заново пересчитать видимые ноги цапель. Когда Маша это сделала, у нее получилось число b.
Выйдя из зоопарка, Петя с Машей заинтересовались, сколько же всего цапель было в вольере. Вскоре ребята поняли, что однозначно определить это число можно не всегда. Теперь они хотят понять, какое минимальное и какое максимальное количество цапель могло быть в вольере.
Требуется написать программу, которая по заданным числам a и b выведет минимальное и максимальное количество цапель, которое могло быть в вольере.
Входной файл содержит два целых числа a и b, разделенных ровно одним пробелом (1 ≤ a ≤ 109, 1 ≤ b ≤ 109).
Выведите в выходной файл два целых числа, разделенных пробелом — минимальное и максимальное число цапель, которое могло быть в вольере. Гарантируется, что хотя бы одно количество цапель соответствует условию задачи.
В приведенном примере возможны следующие варианты:
3 4
2 3
Возрождая древние традиции английских рыцарей, в одном городе члены школьного клуба любителей информатики каждую неделю собираются за круглым столом и обсуждают результаты последних соревнований.
Руководитель клуба Иван Петрович недавно заметил, что не все ребята активно участвуют в обсуждении. Понаблюдав за несколькими заседаниями клуба, он заметил, что активность члена клуба зависит от того, кто с кем сидит рядом.
В клуб приходят на занятия m мальчиков и n девочек. Иван Петрович заметил, что мальчик активно участвует в обсуждении только тогда, когда непосредственно рядом с ним с обеих сторон от него сидят девочки, а девочка активно участвует в обсуждении только тогда, когда непосредственно рядом с ней с одной стороны от нее сидит мальчик, а с другой — девочка.
Желая сделать заседание клуба как можно более интересным, Иван Петрович решил разместить участников за круглым столом таким образом, чтобы как можно больше членов клуба приняло активное участие в обсуждении.
Требуется написать программу, которая по заданным числам m и n выведет такой способ размещения m мальчиков и n девочек за круглым столом, при котором максимальное количество членов клуба будет активно участвовать в обсуждении.
Входной файл содержит два целых числа m и n, разделенных ровно одним пробелом (0 ≤ m ≤ 1000, 0 ≤ n ≤ 1000, m + n ≥ 3).
Выходной файл должен содержать строку с расположенными в некотором порядке m символами «B» (заглавная латинская буква) и n символами «G» (заглавная латинская буква). Символ «B» означает мальчика, а символ «G» — девочку.
Символы следует расположить в том порядке, в котором нужно разместить членов клуба вокруг стола. Соседние символы соответствуют членам клуба, которые сидят рядом. Рядом сидят также члены клуба, соответствующие первому и последнему символу выведенной строки.
В первом примере все члены клуба примут активное участие в обсуждении.
Во втором примере мальчики примут активное участие в обсуждении, а девочки нет. В этом примере можно также разместить членов клуба следующим образом: «BBGG». В этом случае активное участие в обсуждении примут обе девочки, а мальчики — нет. Разместить всех так, чтобы три или четыре члена клуба приняли активное участие в обсуждении, нельзя.
1 2
BGG
2 2
BGBG
Формат XML является распространенным способом обмена данными между различными программами. Недавно программист Иванов написал небольшую программу, которая сохраняет некоторую важную информацию в виде XML-строки.
XML-строка состоит из открывающих и закрывающих тегов.
Открывающий тег начинается с открывающей угловой скобки (<), за ней следует имя тега — непустая строка из строчных букв латинского алфавита, а затем закрывающая угловая скобка (>). Примеры открывающих тегов: <a>, <dog>.
Закрывающий тег начинается с открывающей угловой скобки, за ней следует прямой слеш (/), затем имя тега — непустая строка из строчных букв латинского алфавита, а затем закрывающая угловая скобка. Примеры закрывающихся тегов: </a>, </dog>.
XML-строка называется корректной, если она может быть получена по следующим правилам:
Например, представленные ниже строки:
<a></a>
<a><ab></ab><c></c></a>
<a></a><a></a><a></a>
являются корректными XML-строками, а такие строки как:
<a></b>
<a><b>
<a><b></a></b>
не являются корректными XML-строками.
Иванов отправил файл с сохраненной XML-строкой по электронной почте своему коллеге Петрову. Однако, к сожалению, файл повредился в процессе пересылки: ровно один символ в строке заменился на некоторый другой символ.
Требуется написать программу, которая по строке, которую получил Петров, восстановит исходную XML-строку, которую отправлял Иванов.
Входной файл содержит одну строку, которая заменой ровно одного символа может быть превращена в корректную XML-строку. Длина строки лежит в пределах от 7 до 1000, включительно. Строка содержит только строчные буквы латинского алфавита и символы «<» (ASCII код 60), «>»(ASCII код 62) и «/»(ASCII код 47).
Строка во входном файле заканчивается переводом строки.
Выходной файл должен содержать корректную XML-строку, которая может быть получена из строки во входном файле заменой ровно одного символа на другой. Если вариантов ответа несколько, можно вывести любой.
Примеры входных и выходных файлов
|
input |
output |
|
<a></b> |
<a></a> |
|
<a><aa> |
<a></a> |
|
<a><>a> |
<a></a> |
|
<a/</a> |
<a></a> |