Алгоритм Флойда(20 задач)
Обход в ширину(62 задач)
Алгоритм Форда-Беллмана(6 задач)
Дан ориентированный граф. Требуется определить, есть ли в нем цикл.
В первой строке вводится число вершин N≤ 50. Далее в N строках следуют по N чисел, каждое из которых – 0 или 1. j-ое число в i-ой строке равно 1 тогда и только тогда, когда существует ребро, идущее из i-ой вершины в j-ую. Гарантируется, что на диагонали матрицы будут стоять нули.
Выведите 0, если в заданном графе цикла нет, и 1, если он есть.
3 0 1 0 0 0 1 0 0 0
0
3 0 1 0 0 0 1 1 0 0
1
Максимальное время работы на одном тесте: | 5 секунд |
В неориентированном графе требуется найти минимальный путь между двумя вершинами.
Первым на вход поступает число N – количество вершин в графе (1 ≤ N ≤ 100). Затем записана матрица смежности (0 обозначает отсутствие ребра, 1 – наличие ребра). Далее задаются номера двух вершин – начальной и конечной.
Выведите сначала L – длину кратчайшего пути (количество ребер, которые нужно пройти), а потом сам путь. Если путь имеет длину 0, то его выводить не нужно, достаточно вывести длину.
Необходимо вывести путь (номера всех вершин в правильном порядке). Если пути нет, нужно вывести -1.
5 0 1 0 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 3 5
3 3 2 1 5
Максимальное время работы на одном тесте: | 1 секунда |
На шахматной доске NxN в клетке (x1, y1) стоит голодный шахматный конь. Он хочет попасть в клетку (x2, y2), где растет вкусная шахматная трава. Какое наименьшее количество ходов он должен для этого сделать?
На вход программы поступает пять чисел: N, x1, y1, x2, y2 (5 <= N <= 20, 1 <= x1, y1, x2, y2 <= N). Левая верхняя клетка доски имеет координаты (1, 1), правая нижняя - (N, N).
В первой строке выведите единственное число K - наименьшее необходимое число ходов коня. В каждой из следующих K+1 строк должно быть записано 2 числа - координаты очередной клетки в пути коня.
Пример выходного файла ниже неполный, правильный пример такой:
4 3 3 2 1 1 3 3 2 5 1
5 3 3 5 1
4
Максимальное время работы на одном тесте: | 1 секунда |
Дана таблица, состоящая из N строк и M столбцов. В каждой клетке таблицы записано одно из чисел: 0 или 1. Расстоянием между клетками (x1, y1) и (x2, y2) назовем сумму |x1-x2|+|y1-y2|. Вам необходимо построить таблицу, в клетке (i, j) которой будет записано минимальное расстояние между клеткой (i, j) начальной таблицы и клеткой, в которой записана 1. Гарантируется, что хотя бы одна 1 в таблице есть.
В первой строке вводятся два натуральных числа N и M, не превосходящих 500. Далее идут N строк по M чисел - элементы таблицы.
Требуется вывести N строк по M чисел - элементы искомой таблицы.
2 3 0 0 1 1 0 0
1 1 0 0 1 1
Максимальное время работы на одном тесте: | 1 секунда |
На стандартной шахматной доске (8х8) живут 2 шахматных коня: Красный и Зеленый. Обычно они беззаботно скачут по просторам доски, пощипывая шахматную травку, но сегодня особенный день: у Зеленого коня День Рождения. Зеленый конь решил отпраздновать это событие вместе с Красным. Но для осуществления этого прекрасного плана им нужно оказаться на одной клетке. Заметим, что Красный и Зеленый шахматные кони сильно отличаются от черного с белым: они ходят не по очереди, а одновременно, и если оказываются на одной клетке, никто никого не съедает. Сколько ходов им потребуется, чтобы насладиться праздником?
На вход программы поступают координаты коней, записанные по стандартным шахматным правилам (т.е. двумя символами - маленькая латинская буква (от a до h) и цифра (от 1 до 8), задающие столбец и строку соответственно).
Требуется вывести наименьшее необходимое количество ходов, либо число -1, если кони не могут встретиться.
a1 a3
1