Массивы(232 задач)
Типы данных(356 задач)
Циклы(177 задач)
Условный оператор (if)(164 задач)
Python(260 задач)
Standard Template Library(2 задач)
Дан многочлен \(P(x)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0\) и число \(x\). Вычислите значение этого многочлена, воспользовавшись схемой Горнера:
\[ P(x)= \left( ... \left( \left( \left( a_n x + a_{n-1} \right) x + a_{n-2} \right) x + a_{n-3} \right) ... \right) x + a_{0} \]
Сначала программе подается на вход целое неотрицательное число \(n\le20\), затем действительное число \(x\), затем следует \(n+1\) вещественное число — коэффициенты многочлена от старшего к младшему.
Программа должна вывести значение многочлена.
При решении этой задачи нелья использовать массивы и операцию возведения в степень. Программа должна иметь сложность O(n).
1 0.000 1.000 1.000
1
2 0.500 1.000 1.000 1.000
1.75
Даны вещественные числа \(a\), \(b\), \(c\), \(d\), \(e\), \(f\). Известно, что система линейных уравнений
\[ \cases{ax + by = e, \cr cx + dy = f.} \]имеет ровно одно решение. Выведите два числа \(x\) и \(y\), являющиеся решением этой системы.
Вводятся шесть чисел - коэффициенты уравнений системы.
Выведите ответ на задачу.
1 0 0 1 3 3
3 3
Даны числа \(a\), \(b\), \(c\), \(d\), \(e\), \(f\). Решите систему линейных уравнений
\[ \cases{ax + by = e, \cr cx + dy = f.} \]Вводятся 6 чисел - коэффициенты уравнений.
Вывод программы зависит от вида решения этой системы.
Если система не имеет решений, то программа должна вывести единственное число 0.
Если система имеет бесконечно много решений, каждое из которых имеет вид \(y=kx+b\), то
программа должна вывести число 1, а затем значения \(k\) и \(b\).
Если система имеет единственное решение \((x_0,y_0)\), то программа должна вывести
число 2, а затем значения \(x_0\) и \(y_0\).
Если система имеет бесконечно много решений вида \(x=x_0\), \(y\) — любое, то
программа должна вывести число 3, а затем значение \(x_0\).
Если система имеет бесконечно много решений вида \(y=y_0\), \(x\) — любое, то
программа должна вывести число 4, а затем значение \(y_0\).
Если любая пара чисел \((x,y)\) является решением, то программа должна вывести число 5.
1 0 0 1 3 3
2 3 3
1 1 2 2 1 2
1 -1 1
0 2 0 4 1 2
4 0.5
По данному целому числу N распечатайте все квадраты натуральных чисел, не превосходящие N, в порядке возрастания.
Вводится натуральное число.
Выведите ответ на задачу.
50
1 4 9 16 25 36 49
Дано целое число, не меньшее 2. Выведите его наименьший простой делитель.
Вводится целое положительное число \(2 \le N \le 2*10^9\).
Выведите ответ на задачу.
15
3