Массивы(232 задач)
Типы данных(356 задач)
Циклы(177 задач)
Условный оператор (if)(164 задач)
Python(260 задач)
Standard Template Library(2 задач)
Как известно, в шахматах горизонтальные строки обозначаются цифрами от 1 до 8, считая от расположения белых фигур, стоящих внизу доски, а вертикальные столбцы – буквами латинского алфавита: A, B, C, D, E, F, G, H.
На шахматной доске в клетке с заданными координатами находиться конь. Для клетки А1 после первого хода возможно перемещение коня на клетку С2 или В3.
Требуется написать программу, которая определяет координаты всех клеток, куда можно пойти конём первым ходом.
В единственной входной строке записано обозначение исходной позиции коня на шахматной доске.
В единственной строке должны быть записаны через пробел обозначения всех клеток, в которые может переместиться конь после первого хода. Клетки выводятся в следующем порядке: вначале клетки первого ряда слева – направо, далее клетки второго ряда и т.д.
A1
C2 B3
Как известно, в шахматах горизонтальные строки обозначаются цифрами от 1 до 8, считая от расположения белых фигур, стоящих внизу доски, а вертикальные столбцы – буквами латинского алфавита: A, B, C, D, E, F, G, H.
На шахматной доске в клетке с заданными координатами находиться конь. Сначала делается первый ход конём, а затем – второй ход. Например, для клетки А1 после первого хода возможно перемещение коня на клетку С2 или В3, а после второго хода – на клетки А1, Е1, А3, Е3, В4, D4.
Требуется написать программу, которая определяет координаты всех клеток, куда можно прийти конём за два хода.
В единственной входной строке записано обозначение исходной позиции коня на шахматной доске.
В единственной строке должны быть записаны через пробел обозначения всех клеток, в которые может переместиться конь после второго хода. Клетки выводятся в следующем порядке: вначале клетки первого ряда слева – направо, далее клетки второго ряда и т.д.
A1
A1 C1 E1 D2 A3 E3 B4 D4 A5 C5
В конструкторском бюро проектируют планетоход для исследования поверхности планеты Марс. Исследования должны проводиться на прямоугольной области планеты без препятствий внутри неё. Эта область разделена на единичные квадраты и имеет размеры \(M \times N\), где \(M\) – высота прямоугольника, а \(N\) – его ширина.
Планируется, что планетоход должен работать по следующей программе. Вначале он садится в северо-западном углу заданной области в направлении на восток. После этого планетоход начинает обход и исследование выбранной области, двигаясь по спирали по часовой стрелке. При этом спираль постепенно «закручивается» вовнутрь, захватывая постепенно все клетки прямоугольника. Исследование заканчивается, когда пройдены все клетки (после очередного поворота планетохода).
Требуется написать программу, которая для заданных \(M\) и \(N\) (\(1 \le M, N \le 32767\)) определяет количество поворотов, которые должен выполнить планетоход в процессе исследования области.
В единственной входной строке через пробел записаны два целых числа \(M\) и \(N\) (\(1 \le M, N \le 32767\)), размеры исследуемого прямоугольного участка.
Программа должна вывести одно целое число – количество поворотов, которое выполнит планетоход при исследовании заданной области на поверхности Марса.
3 4
5
5 3
6
Числа в позиционной троично-симметричной системе счисления записываются с использованием трех символов: +, –, 0. Например, такими числами являются, например,
"+ + 0 – 0", "– – 0 +", "– – –".
Эти числа переводятся в десятичную систему как:
а) + + 0 – 0 = 1*\(3^4\) + 1*\(3^3\) + 0*\(3^2\) – 1*\(3^1\) + 0*\(3^0\)
б) – – 0 + = – 1*\(3^3\) – 1*\(3^2\) + 0*\(3^1\) + 1*\(3^0\)
в) – – – = – 1*\(3^2\) – 1*\(3^1\) – 1*\(3^0\)
Над числами в позиционной троично-симметричной системе счисления можно выполнять два действия: сложение (+) и вычитание (–). Требуется написать программу, которая вычисляет сумму или разность чисел в троично-симметричной системе счисления. Таблица Пифагора для сложения цифр в троично-симметричной системе счисления имеет вид:
В единственной строке записаны два числа в троично-симметричной системе счисления, между которыми в скобках записана требуемая операция. Разрядность чисел не превышает 15.
В единственной строке необходимо вывести полученный в результате заданной операции результат в троично-симметричной системе счисления.
+++0-(+)-0+
++000
Для моделирования различных объектов часто применяются так называемые клеточные поля. В простейшем случае – это прямоугольные таблицы, характеризующие некоторую область, а в каждой ячейке таблицы записывается какая-либо информация об исследуемом объекте. В биологии для моделирования распространения вирусов на плоской области в каждой ячейке помечается наличие вируса, а его распространение осуществляется в соседние ячейки по вертикали и горизонтали за одну единицу времени. Некоторые клетки обладают иммунитетом, заразить их невозможно и через них не распространяются вирусы.
Требуется написать программу, которая определяет минимально возможное число вирусов, с помощью которых можно заразить всю исследуемую прямоугольную область (за исключением защищённых клеток).
В приведённом примере таблица имеет размер \(4\times5\), в ней символом "I" помечены защищённые клетки. Видно, что двух вирусов достаточно для заражения всей области. Их можно поместить, например, в клетки, помеченные символом "V".
В первой входной строке записаны два натуральных числа \(M\) и \(N\) - размеры таблицы (количество строк и столбцов соответственно). Известно, что
\(1 \le M, N \le 100\). Во второй строке вначале записано одно число \(K\) - количество защищённых клеток, а далее записаны \(2K\) чисел – координаты этих клеток \(x_i\), \(y_i\) (\(0 \le k \le M \times N, 1 \le x_i \le M, 1 \le y_i \le N\)).
Программа должна вывести одно число – минимально возможное число вирусов.
4 5 3 1 3 2 1 2 2
2