Темы --> Информатика --> Язык программирования
    Процедуры и функции(96 задач)
    Массивы(232 задач)
    Типы данных(356 задач)
    Циклы(177 задач)
    Условный оператор (if)(164 задач)
    Python(260 задач)
    Standard Template Library(2 задач)
---> 952 задач <---
Источники
    Личные олимпиады(938 задач)
    Командные олимпиады(684 задач)
Страница: << 33 34 35 36 37 38 39 >> Отображать по:
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

На вход программы поступает строка текста, в которой могут встречаться:
— прописные и строчные (т.е. большие и маленькие) латинские буквы;
— пробелы;
— знаки препинания: точка, запятая, восклицательный и вопросительный знак;
— символ –, обозначающий в некоторых случаях тире, а в некоторых — дефис.
Слово — это последовательность подряд идущих латинских букв и знаков дефис, ограниченная с обоих концов. В качестве ограничителей могут выступать начало строки, конец строки, пробел, знак препинания, тире. Тире отличается от дефиса тем, что слева и справа от знака дефис пишутся буквы, а хотя бы с одной стороны от тире идет либо начало строки, либо конец строки, либо пробел, либо какой-либо знак препинания, либо еще одно тире.
Напишите программу, определяющую, сколько слов в данной строке текста.

Входные данные

Вводится строка длиной не более 200 символов.

Выходные данные

Выведите одно число — количество слов, которые содержатся в исходной строке.

Примеры
Входные данные
Hello , world!
Выходные данные
2
Входные данные
www.olympiads.ru
Выходные данные
3
Входные данные
Gyro-compass - this is a ...
Выходные данные
4
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Витя работает недалеко от одной из станций кольцевой линии Московского метро, а живет рядом с другой станцией той же линии. Требуется выяснить, мимо какого наименьшего количества промежуточных станций необходимо проехать Вите по кольцу, чтобы добраться с работы домой.

Входные данные

Станции пронумерованы подряд натуральными числами 1, 2, 3, …, \(N\) (1-я станция – соседняя с \(N\)-й), \(N\) не превосходит 100.

Вводятся три числа: сначала \(N\) – общее количество станций кольцевой линии, а затем \(i\) и \(j\) – номера станции, на которой Витя садится, и станции, на которой он должен выйти. Числа \(i\) и \(j\) не совпадают. Все числа разделены пробелом.

Выходные данные

Требуется выдать минимальное количество промежуточных станций (не считая станции посадки и высадки), которые необходимо проехать Вите.

Пояснения к примерам

1) На кольцевой линии 100 станций; проехать с 5-й на 6-ю станцию Витя может напрямую, без промежуточных станций

2) На кольцевой линии 10 станций; проехать с 1-й на 9-ю станцию Витя может через одну промежуточную, ее номер 10

Примеры
Входные данные
100 5 6
Выходные данные
0
Входные данные
10 1 9
Выходные данные
1
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Уставшие от необычно теплой зимы, москвичи решили узнать, действительно ли это самая длинная оттепель за всю историю наблюдений за погодой. Они обратились к синоптикам, а те, в свою очередь, занялись исследованиями статистики за прошлые годы. Их интересует, сколько дней длилась самая длинная оттепель.

Оттепелью они называют период, в который среднесуточная температура ежедневно превышала 0 градусов Цельсия. Напишите программу, помогающую синоптикам в работе.

Входные данные

Cначала вводится число \(N\) – общее количество рассматриваемых дней (1 ≤ \(N\) ≤ 100). В следующей строке задается \(N\) целых чисел, разделенных пробелами. Каждое число – среднесуточная температура в соответствующий день. Температуры – целые числа, принадлежащие диапазону от –50 до 50.

Выходные данные

Требуется вывести одно число – длину самой продолжительной оттепели, то есть наибольшее количество последовательных дней, на протяжении которых среднесуточная температура превышала 0 градусов. Если температура в каждый из дней была неположительной, выведите 0.

Пояснения к примерам

1) Рассматриваются 6 дней. Самая продолжительная оттепель была на 4-й и 5-й день (50 и 10 градусов соответственно)

2) Самая продолжительная оттепель была в первые 4 дня

3) Дней с положительной температурой не было

Примеры
Входные данные
6
-20 30 -40 50 10 -10
Выходные данные
2
Входные данные
8
10 20 30 1 -10 1 2 3
Выходные данные
4
Входные данные
5
-10 0 -10 0 -10
Выходные данные
0
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Из шахматной доски по границам клеток выпилили связную (не распадающуюся на части) фигуру без дыр. Требуется определить ее периметр.

Входные данные

Сначала вводится число \(N\) (1 ≤ \(N\) ≤ 64) – количество выпиленных клеток. В следующих \(N\) строках вводятся координаты выпиленных клеток, разделенные пробелом (номер строки и столбца – числа от 1 до 8). Каждая выпиленная клетка указывается один раз.

Выходные данные

Выведите одно число – периметр выпиленной фигуры (сторона клетки равна единице).

Пояснения к примерам

1) Вырезан уголок из трех клеток. Сумма длин его сторон равна 8.

2) Вырезана одна клетка. Ее периметр равен 4.

Примеры
Входные данные
3
1 1
1 2
2 1
Выходные данные
8
Входные данные
1
8 8
Выходные данные
4
#520
  
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes
Даны размеры контейнера (в трех измерениях) и двух коробок. Необходимо определить, помещаются ли коробки в контейнер, если верх обязательно должен совпадать и боковые грани должны быть параллельны граням контейнера.

В одну транспортную компанию поступил заказ на перевозку двух ящиков из одного города в другой. Для перевозки ящики решено было упаковать в специальный контейнер.

Ящики и контейнер имеют вид прямоугольных параллелепипедов. Длина, ширина и высота первого ящика – \(l_1\), \(w_1\) и \(h_1\), соответствующие размеры второго ящика – \(l_2\), \(w_2\) и \(h_2\). Контейнер имеет длину, ширину и высоту \(l_c\), \(w_c\) и \(h_c\).

Поскольку ящики содержат хрупкое оборудование, после упаковки в контейнер каждый из них должен остаться в строго вертикальном положении. Таким образом, ящики можно разместить рядом или один на другом. Для надежного закрепления в контейнере стороны ящиков должны быть параллельны его сторонам. Иначе говоря, если исходно ящики были расположены так, что все их стороны параллельны соответствующим сторонам контейнера, то каждый из них разрешается перемещать и поворачивать относительно вертикальной оси на угол, кратный 90 градусам.

Разумеется, после упаковки оба ящика должны полностью находиться внутри контейнера и не должны пересекаться.

Выясните, можно ли поместить ящики в контейнер с соблюдением указанных условий.

Входные данные

Первая строка входных данных содержит \(l_1\), \(w_1\) и \(h_1\), вторая – \(l_2\), \(w_2\) и \(h_2\), третья – \(l_c\), \(w_c\) и \(h_c\). Все размеры – целые положительные числа, не превышающие 1000. Числа в строках разделены пробелами.

Выходные данные

Выведите YES, если ящики можно упаковать в контейнер, и NO в противном случае.

Пояснения к примерам

В первых двух примерах ящики можно разместить рядом, при этом во втором один из них следует повернуть на 90 градусов. В третьем примере ящики можно разместить один на другом. В четвертом примере первый ящик слишком высокий и не влезает в контейнер. В пятом примере ящики нельзя разместить ни рядом, ни один на другом.

Примеры
Входные данные
2 2 3
3 3 3
3 5 3
Выходные данные
YES
Входные данные
2 3 3
3 2 3
4 4 4
Выходные данные
YES
Входные данные
4 1 2
3 3 2
4 3 4
Выходные данные
YES
Входные данные
1 1 4
1 1 3
10 10 3
Выходные данные
NO
Входные данные
3 2 2
3 1 2
5 2 3
Выходные данные
NO

Страница: << 33 34 35 36 37 38 39 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест