---> 96 задач <---
Источники
    Личные олимпиады(938 задач)
    Командные олимпиады(684 задач)
Страница: << 5 6 7 8 9 10 11 >> Отображать по:
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Требуется заполнить массив размера N × N единичками по спирали (начиная с верхнего левого угла по часовой стрелке, см. пример).

Входные данные

С клавиатуры вводится число N (нечетное, натуральное и не превышающее 50).

Выходные данные

Требуется вывести на экран построенную спираль.

Примеры
Входные данные
7
Выходные данные
1111111
0000001
1111101
1000101
1011101
1000001
1111111
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Выведите двумерный массив, размерами N×N, заполненный числами от единицы до N2 по спирали. Числовая спираль начинается в левом верхнем углу и закручивается по часовой стрелке.

Входные данные

Входной файл содержит единственное число 1 ≤ N ≤ 10.

Выходные данные

Выведите N2 чисел – заполненный по спирали массив.

Примеры
Входные данные
1
Выходные данные
1 
Входные данные
2
Выходные данные
1 2 
4 3 
Входные данные
3
Выходные данные
1 2 3 
8 9 4 
7 6 5 
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

Вы, наверное, замечали, что многие компании используют для рекламы «красивые» номера телефонов, которые удобны для запоминания потенциальными клиентами. Но что делать, если номер вашей компании ничем не примечателен? Можно присмотреться к нему повнимательнее, а вдруг, если перегруппировать цифры номера некоторым образом, номер станет намного красивее? Например, если у вашей компании номер 872-73-33, то его можно сделать красивее, если перегруппировать цифры так: 8727-333.

Введем следующую оценку красоты разбиения номера. Будем разбивать номер дефисами на группы размером от 2 до 4 цифр. Теперь красотой разбиения назовем сумму баллов, которые приносит каждая группа. Эти баллы будем считать, пользуясь следующей таблицей.

	 
Шаблон группы          Баллы	 
aa                     2	 
aba                    2	 
aab, abb               2	 
aaa                    3	 
abac, baca             2	 
abab                   3	 
aabb                   3	 
abba                   4	 
baaa, abaa, aaba, aaab 3	 
aaaa                   5

В этой таблице символами «a», «b», «c» обозначены различные цифры. Например под шаблон «aab» подходят группы «223», «667», но не подходят «123» и «888».

Пользуясь предложенной оценкой, найдите наиболее красивое разбиение заданного номера.

Входные данные

Входной файл содержит одну строку из 7 цифр – заданный телефонный номер.

Выходные данные

Выведите в первой строке выходного файла наиболее красивое разбиение номера, а во второй – величину его красоты.

Если разбиений с максимальной величиной красоты несколько, выведите в выходной файл любое из этих разбиений.

Примеры
Входные данные
8727333
Выходные данные
8727-333
5
Входные данные
8827291
Выходные данные
88-272-91
4
ограничение по времени на тест
4.0 second;
ограничение по памяти на тест
64 megabytes

Предприятие «Авто-2010» выпускает двигатели для известных во всём мире автомобилей. Двигатель состоит ровно из \(n\) деталей, пронумерованных от 1 до \(n\), при этом деталь с номером \(i\) изготавливается за \(p_i\) секунд. Специфика предприятия «Авто-2010» заключается в том, что там одновременно может изготавливаться лишь одна деталь двигателя. Для производства некоторых деталей необходимо иметь предварительно изготовленный набор других деталей.

Генеральный директор «Авто-2010» поставил перед предприятием амбициозную задачу — за наименьшее время изготовить деталь с номером 1, чтобы представить её на выставке.

Требуется написать программу, которая по заданным зависимостям порядка производства между деталями найдёт наименьшее время, за которое можно произвести деталь с номером 1.

Входные данные

Первая строка входного файла содержит число \(n\) (\(1\le n\le100000\)) — количество деталей двигателя. Вторая строка содержит \(n\) натуральных чисел \(p_1,p_2, \ldots,p_n\), определяющих время изготовления каждой детали в секундах. Время для изготовления каждой детали не превосходит \(10^9\) секунд.

Каждая из последующих \(n\) строк входного файла описывает характеристики производства деталей. Здесь \(i\)-я строка содержит число деталей \(k_i\), которые требуются для производства детали с номером \(i\), а также их номера. В \(i\)-й строке нет повторяющихся номеров деталей. Сумма всех чисел \(k_i\) не превосходит 200000.

Известно, что не существует циклических зависимостей в производстве деталей.

Выходные данные

В первой строке выходного файла должны содержаться два числа: минимальное время (в секундах), необходимое для скорейшего производства детали с номером 1 и число \(k\) деталей, которые необходимо для этого произвести. Во второй строке требуется вывести через пробел \(k\) чисел — номера деталей в том порядке, в котором следует их производить для скорейшего производства детали с номером 1.

Примеры
Входные данные
3
100 200 300
1 2
0
2 2 1
Выходные данные
300 2
2 1
Входные данные
2
2 3
1 2
0
Выходные данные
5 2
2 1
Входные данные
4
2 3 4 5
2 3 2
1 3
0
2 1 3
Выходные данные
9 3
3 2 1
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Напишите функцию для нахождения наибольшего общего делителя двух чисел с помощью алгоритма Евклида и используйте ее в программе для нахождения НОД уже \(n\) чисел.

Входные данные

На вход программе сначала подается значение \(n\) (\(2 \le n \le 100\)). В следующей строке находятся \(n\) целых неотрицательных чисел, не превосходящих \(30\,000\).

Выходные данные

Выведите НОД исходных чисел.

Примеры
Входные данные
3
24 8 20
Выходные данные
4
Входные данные
4
0 2 4 8
Выходные данные
2

Страница: << 5 6 7 8 9 10 11 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест