---> 240 задач <---
Источники
    Личные олимпиады(938 задач)
    Командные олимпиады(684 задач)
Страница: << 28 29 30 31 32 33 34 >> Отображать по:
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Напишите функцию для нахождения наибольшего общего делителя двух чисел с помощью алгоритма Евклида и используйте ее в программе для нахождения НОД уже \(n\) чисел.

Входные данные

На вход программе сначала подается значение \(n\) (\(2 \le n \le 100\)). В следующей строке находятся \(n\) целых неотрицательных чисел, не превосходящих \(30\,000\).

Выходные данные

Выведите НОД исходных чисел.

Примеры
Входные данные
3
24 8 20
Выходные данные
4
Входные данные
4
0 2 4 8
Выходные данные
2
ограничение по времени на тест
5.0 second;
ограничение по памяти на тест
64 megabytes

Напишите свой аналог функции fractions.gcd (назовите ее gcd).

Входные данные

Вводятся два натуральных числа через пробел.

Выходные данные

Вывести их наибольший общий делитель.

Примеры
Входные данные
928456982736495876239876592387469578236500 216498237659872365987387562938749785625
Выходные данные
125
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

Во Флатландии с некоторых пор процветают феодальные отношения – у каждого порядочного феодала есть ровно два вассала, у непорядочных – вассалов нет совсем. Каждый феодал строит свой замок в городе на прямой, при этом:

  • высота замка (всегда целое положительное число) должна быть строго больше высот замков его вассалов (для соблюдения субординации).
  • замки первого из двух вассалов и всех вассалов этого вассала должны быть построены слева, второго вассала и его вассалов – справа (для пресечения междоусобиц). Это правило должно выполняться для всех
  • высота замка должна быть минимально возможной (для экономии ресурсов)
  • число всех подчиненных (непосредственно или через промежуточных) у правого и левого вассалов одинаково (для баланса сил).

Для удобства замки феодалов занумерованы натуральными числами по порядку слева направо, начиная с единицы, и разбиты на улицы. Улица (i, j) представляет собой последовательность подряд идущих замков, начиная с замка под номером i и заканчивая замком с номером j (i j)

Однажды в город приехал новый феодал и пожелал выкупить там замок у одного из жителей. Также ему стало интересно узнать социальный статус соседей по улице, однако, город к тому времени так разросся, что феодал уже не мог сделать этого самостоятельно. Напишите программу, которая поможет ему!

Входные данные

Первая строка входного файла содержит число N (1 ≤ N ≤ 30000) — высота замка единственного главного феодала в городе, который никому не подчиняется. Далее, в следующих двух строках идут числа i и j (\(0 \leq i, j < 10^{10000}\)), задающие улицу (i, j), на которой хочет приобрести замок новый феодал (гарантируется, что замки с номерами i и j находятся в черте города, i j, ji ≤ 105).

В выходной файл требуется вывести высоты всех замков на указанной улице слева направо через пробел.

Примечание

Будут оцениваться и частичные решения задачи при малых N. Частичные решения для N<20 набирают до 40 баллов, а для N<50 набирают не более 70 баллов.

Ввод
Вывод
2
1
3
1 2 1
3
3
7
1 3 1 2 1
50
128873293
128873293
1
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes

Развлекательный телеканал транслирует шоу «Колесо Фортуны». В процессе игры участники шоу крутят большое колесо, разделенное на сектора. В каждом секторе этого колеса записано число. После того как колесо останавливается, специальная стрелка указывает на один из секторов. Число в этом секторе определяет выигрыш игрока.

Юный участник шоу заметил, что колесо в процессе вращения замедляется из-за того, что стрелка задевает за выступы на колесе, находящиеся между секторами. Если колесо вращается с угловой скоростью \(v\) градусов в секунду, и стрелка, переходя из сектора \(X\) к следующему сектору, задевает за очередной выступ, то текущая угловая скорость движения колеса уменьшается на \(k\) градусов в секунду. При этом если \(v \le k\), то колесо не может преодолеть препятствие и останавливается. Стрелка в этом случае будет указывать на сектор \(X\).

Юный участник шоу собирается вращать колесо. Зная порядок секторов на колесе, он хочет заставить колесо вращаться с такой начальной скоростью, чтобы после остановки колеса стрелка указала на как можно большее число. Колесо можно вращать в любом направлении и придавать ему начальную угловую скорость от \(a\) до \(b\) градусов в секунду.

Требуется написать программу, которая по заданному расположению чисел в секторах, минимальной и максимальной начальной угловой скорости вращения колеса и величине замедления колеса при переходе через границу секторов вычисляет максимальный выигрыш.

Входные данные

Первая строка входного файла содержит целое число \(n\) — количество секторов колеса (\(3 \le n \le 100\)).

Вторая строка входного файла содержит \(n\) положительных целых чисел, каждое из которых не превышает \(1000\) — числа, записанные в секторах колеса. Числа приведены в порядке следования секторов по часовой стрелке. Изначально стрелка указывает на первое число.

Третья строка содержит три целых числа: \(a\), \(b\) и \(k\) (\(1 \le a \le b \le 10^9\), \(1 \le k \le 10^9\)).

Выходные данные

В выходном файле должно содержаться одно целое число — максимальный выигрыш.

Примечание

В первом примере возможны следующие варианты: можно придать начальную скорость колесу равную 3 или 4, что приведет к тому, что стрелка преодолеет одну границу между секторами, или придать начальную скорость равную 5, что позволит стрелке преодолеть 2 границы между секторами. В первом варианте, если закрутить колесо в одну сторону, то выигрыш получится равным 2, а если закрутить его в противоположную сторону, то — 5. Во втором варианте, если закрутить колесо в одну сторону, то выигрыш будет равным 3, а если в другую сторону, то — 4.

Во втором примере возможна только одна начальная скорость вращения колеса — 15 градусов в секунду. В этом случае при вращении колеса стрелка преодолеет семь границ между секторами. Тогда если его закрутить в одном направлении, то выигрыш составит 4, а если в противоположном направлении, то — 3.

Наконец, в третьем примере оптимальная начальная скорость вращения колеса равна 2 градусам в секунду. В этом случае стрелка вообще не сможет преодолеть границу между секторами, и выигрыш будет равен 5.

Правильные решения для тестов, в которых \(1 \le a \le b \le 1000\), будут оцениваться из 50 баллов.

Примеры
Входные данные
5
1 2 3 4 5
3 5 2
Выходные данные
5
Входные данные
5
1 2 3 4 5
15 15 2
Выходные данные
4
Входные данные
5
5 4 3 2 1
2 5 2
Выходные данные
5
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Параллель восьмых классов написала контрольную работу. В результате ровно A% учащихся получили 5, ровно B% — 4, ровно C% — 3, а остальные D% написали её на 2. Какое минимальное количество школьников должно быть в параллели восьмых классов для того, чтобы могли получиться такие результаты?

Входные данные

Вводятся 4 целых числа от 0 до 100 — A, B, C, D (A + B + C + D = 100).

Выходные данные

Выведите единственное целое положительное число — минимальное возможное количество учащихся в параллели.

Примеры
Входные данные
40 50 5 5
Выходные данные
20

Страница: << 28 29 30 31 32 33 34 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест