Системы счисления(36 задач)
"Длинная" арифметика(58 задач)
Простые числа и разложение на множители(45 задач)
Остатки(21 задач)
Быстрое возведение в степень(3 задач)
Быстрое преобразование Фурье(3 задач)
Этим летом у бабушки был большой урожай яблок. Она собрала яблоки в корзину и отдала своим \(K\) внукам.
Первый внук взял из корзины половину всех яблок и еще \(a_1\) яблоко (если количество яблок не делилось на два, то результат деления на два он мог округлить как в большую сторону, так и в меньшую). К примеру, если в корзине было 7 яблок и \(a_1 = 1\), то он мог взять либо 4, либо 5, а если было 6 яблок и \(a_1 = 1\), то он взял ровно 4.
Второй внук взял половину от всех оставшихся яблок и ещё \(a_2\) (если яблок было нечетное количество, то он также мог округлить половину как в большую, так и в меньшую сторону). И так далее, \(K\)-ый внук взял половину яблок, оставшихся после \(K - 1\) внука, и ещё \(a_k\). В итоге в корзине ничего не осталось.
Теперь они задумались, насколько же большой урожай был у бабушки. Ни один из них не помнит, делилось ли количество яблок на 2 нацело при его выборе, а если нет, то в какую сторону он округлил половину яблок. Внуков интересует минимальное и максимальное изначальное количество яблок в корзине, при которых могли произойти описанные события.
Сначала вводится целое положительное число \(K\) (\(1 \le K \le 1\,000\)). Далее записано \(K\) целых неотрицательных чисел \(a_1, \dots , a_K\) (\(0 \le a_i \le 1\,000\)).
Выведите два неотрицательных целых числа без ведущих нулей, каждое в новой строке - минимальное и максимальное возможное количество яблок в корзине соответственно.
1 1
1 3
2 0 1
1 7
По заданному числу \(N\) найдите натуральное число \(K\), такое что:
Так, для \(N=1\) условию удовлетворяет, например, число \(K=13223140496\), т.к. оно имеет длину 11, что укладывается в диапазон от 1 до 24, а также число \(1322314049613223140496\) является точным квадратом натурального числа.
Вводится одно натуральное число \(N\) (\(1 \le N \le 2323\)).
Выведите искомое число \(K\). Если чисел, удовлетворяющих условию, несколько, выведите любое из них. Если таких чисел не существует, выведите 0.
Тесты состоят из четырёх групп. В этой задаче нет off-line групп. Баллы за каждую группу начисляются только при прохождении всех тестов этой группы.
1
13223140496
11
13223140496
10
13223140496
39
1322314049586776859504132231404958677685950413223140496
Натуральное число \(a\) называется делителем натурального числа \(b\), если \(b = ac\) для некоторого натурального числа \(c\). Например, делителями числа 6 являются числа 1, 2, 3 и 6. Два числа называются взаимно простыми, если у них нет общих делителей кроме 1. Например, 16 и 27 взаимно просты, а 18 и 24 — нет.
Будем называть нормальным набор из \(k\) чисел (\(a_1, a_2, \ldots, a_k\)), если выполнены следующие условия:
Например, набор (2, 9, 10) является нормальным набором из 3 делителей числа 360.
Требуется написать программу, которая по заданным значениям \(n\) и \(k\) определяет количество нормальных наборов из \(k\) делителей числа \(n\).
Первая строка входного файла содержит два целых числа: \(n\) и \(k\) (\(2 \le n \le 10^8\), \(2 \le k \le 10\)).
В выходном файле должно содержаться одно число — количество нормальных наборов из \(k\) делителей числа \(n\).
Правильные решения для тестов, в которых \(n \le 1000\) и \(k = 2\), оцениваются из 30 баллов.
Правильные решения для тестов, в которых \(k = 2\), оцениваются из 60 баллов (в эти баллы включаются также 30 баллов для случая \(n \le 1000\), \(k = 2\)).
90 3
16
10 2
4
Даны натуральные числа a, b, c. Если уравнение ax+by=c имеет
решения в целых числах, то выведите через пробел НОД(a,b), x и y (какое-нибудь решение).
Если решения не существует, то выведите слово Impossible
.
Входные данные - натуральные числа и не превышают по модулю 10000.
Выведите ответ на задачу.
1 2 3
1 1 1
10 6 8
2 2 -2
Найдите наименьшее общее кратное всех целых чисел от \(1\) до \(N\). Наименьшим общим кратным натуральных чисел \(a_1\),\(a_2\),…,\(a_k\) называется число \(A\), такое что \(А\) делится на \(a_i\) для всех \(i\) от \(1\) до \(k\), причем \(A\) – наименьшее натуральное число, обладающее этим свойством.
Одно целое число (\(1 \leq N \leq 1000\)).
Выведите одно целое число – наименьшее общее кратное всех чисел от \(1\) до \(N\).
3
6