---> 16 задач <---
Источники
    Личные олимпиады(938 задач)
    Командные олимпиады(684 задач)
Страница: << 1 2 3 4 >> Отображать по:
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Преобразуйте двоичное число.

Входные данные

Дана запись целого двоичного числа или двоичной периодической дроби, которая включает в себя:

1. Необязательную целую часть.
2. Необязательный символ точки, отделяющий целую часть от дробной. 

3. Необязательную дробную непериодическую часть. 

4. Необязательную периодическую дробную часть, записываемую в круглых скобках.

Выходные данные

Необходимо определить значение этой дроби, сохранить его в переменной типа double и вывести на экран с точностью не менее 12 знаков. Общая длина входной строки не превосходит 30 символов.

Примеры
Входные данные
0.1
Выходные данные
0.5
Входные данные
0.01
Выходные данные
0.25
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Дано рациональное число. Запишите его в виде двоичной периодической дроби.

Входные данные

На вход программа получает два натуральных числа n и m, каждое из которых не превосходит 1000.

Выходные данные

Программа должна вывести значение n/m, записанное в виде двоичной периодической дроби, при этом длина непериодической дробной части и длина периода должны быть минимально возможными. Если данное число является конечной двоичной дробью, периодическую часть выводить не надо.

Примеры
Входные данные
1 2

Выходные данные
0.1
Входные данные
1 3

Выходные данные
0.(01)

Преобразуйте дробь.

Входные данные

Дана запись двоичной дроби, как в задаче "Binary periodical fraction to decimal", но в целых числах точки может не быть. Необходимо представить ее в виде несократимой рациональной дроби n/m.

Выходные данные

Программа должна вывести значения n и m .

Примеры
Входные данные
0.1
Выходные данные
1 2
Входные данные
0.01
Выходные данные
1 4
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Ассоциация Тапкодер организует Всемирное парное соревнование сильнейших программистов. К участию в соревновании допущены первые 2k зарегистрировавшихся участников, которым присвоены номера от 1 до 2k.

Соревнование будет проходить по олимпийской системе. В первом туре первый участник встречается со вторым, третий с четвертым и так далее. В каждой паре победителем становится участник, первым решивший предложенную задачу, при этом ничьих не бывает. Все победители очередного тура и только они являются участниками следующего тура. В каждом туре пары составляются из участников в порядке возрастания присвоенных им номеров. Соревнование продолжается до тех пор, пока не останется один победитель.

Организаторам стало известно, что некоторые пары участников заранее договорились о результате встречи между собой, если такая встреча состоится. Для всех остальных встреч, кроме n договорных, возможен любой исход.

Некоторые m участников соревнования представили свои резюме в ассоциацию Тапкодер с целью поступления на работу. Организаторов интересует, до какого тура может дойти каждый из претендентов при наиболее благоприятном для него стечении обстоятельств. При этом для каждого участника в отдельности считается, что все недоговорные встречи, в том числе те, в которых он не участвует, закончатся так, как ему выгодно, а все состоявшиеся договорные встречи закончатся в соответствии с имеющимися договоренностями.

Требуется написать программу, которая для каждого из претендентов определяет максимальный номер тура, в котором он может участвовать.

Входные данные

В первой строке заданы три целых числа k (1 ≤ k ≤ 60), n (0 ≤ n ≤ 100 000) и m (1 ≤ m ≤ 100 000). В следующих n строках описаны n пар участников, которые договорились между собой о том, что первый из двух участников пары выиграет встречу, если она состоится. Гарантируется, что каждая пара участников присутствует во входных данных не более одного раза, при этом, если задана пара x y, то пары y x быть не может, кроме того, x y. В последней строке перечислены номера участников, желающих работать в Тапкодере, в порядке возрастания их номеров. Все номера претендентов на работу различны.

Выходные данные

Выходные данные должны содержать m целых чисел — максимальные номера туров, до которых могут дойти соответствующие претенденты на работу. Туры нумеруются от 1 до k.

Комментарии к примерам тестов.

1. У каждого из участников есть возможность выйти в финал, так как договорных матчей нет.

2. Если четвертый участник выиграет у третьего, то договорная встреча первого и третьего не состоится, что благоприятно для первого.

3. Первому участнику благоприятно во втором туре играть с третьим, а не с четвертым, в свою очередь, четвертый может выиграть у третьего и также выйти в финал.

Система оценки

Тесты к этой задаче состоят из четырех групп, баллы начисляются только при прохождении всех тестов группы и всех тестов предыдущих групп.

0. Тесты 1–10. k <= 5. Эта группа оценивается в 30 баллов.

1. Тесты 11–14. k <= 20. Эта группа оценивается в 20 баллов.

2. Тесты 15–18. k <= 30. Эта группа оценивается в 20 баллов.

3. Тесты 19–23. Дополнительные ограничения отсутствуют. Эта группа оценивается в 30 баллов.

Примеры
Входные данные
2 0 3
1 3 4
Выходные данные
2 2 2
Входные данные
3 1 1
3 1
1
Выходные данные
3
Входные данные
3 3 4
1 2
1 3
4 1
1 2 3 4
Выходные данные
3 1 2 3
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes

Как много открытий можно сделать, исследуя числа и составляющие их цифры!

Петя очень любит арифметику, и кроме домашних заданий он постоянно придумывает дополнительные задачи. Однажды он стал прибавлять к натуральным числам сумму составляющих их цифр. Петя обнаружил, что некоторые числа, например 20, не могут быть получены из других чисел в результате такого действия. Эти числа ему не понравились, и он назвал их некрасивыми.

Позже, когда Петя начал изучать информатику, те же исследования он стал проводить с натуральными числами в двоичной системе счисления. Например, двоичное число 1110­2 (в десятичной системе — 14) можно получить из числа 11002 (в десятичной системе — 12), прибавив к последнему сумму его цифр:

11002 + 102 = 11102.

Петя решил исследовать множество двоичных некрасивых чисел. Первые пять некрасивых чисел он нашел без труда: 1 = 12, 4 = 1002, 6 = 1102, 13 = 11012, 15 = 11112. Продолжить работу он собирается с помощью компьютера.

Требуется написать программу, которая определяет количество двоичных некрасивых чисел, не превосходящих заданного числа n.

Входные данные

В первой строке входного файла содержится число n, записанное в десятичной системе счисления (1   1018).

Выходные данные

В единственной строке выходного файла должно содержаться единственное число — количество двоичных некрасивых чисел, не превосходящих n.

Примечание

Решения, корректно работающие при n ≤ 106, будут оцениваться из 40 баллов.

Примеры
Входные данные
17
Выходные данные
5
Входные данные
18
Выходные данные
6

Страница: << 1 2 3 4 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест