Мальчику Васе очень нравится известная игра «Сапер». В нее играет один человек. Игра идет на клетчатом поле размером \(m\)×\(n\) (\(m\) строк, \(n\) столбцов). В некоторых клетках поля стоят мины. В каждой из остальных клеток записано либо число от 1 до 8 – количество мин в соседних с ней клетках, либо ничего не написано – это означает, что в соседних клетках мин нет. Клетки являются соседними, если они имеют хотя бы одну общую вершину. В одной клетке не может стоять более одной мины. Будем называть поле с расположенными на нем минами и числами картой.
Изначально все клетки поля закрыты. Игрок за один ход может открыть какую-нибудь клетку. После этого игроку показывается содержимое этой клетки, и если в открытой им клетке оказывается мина, он проигрывает. В противном случае игра продолжается. Цель игры – открыть все клетки, в которых нет мин.
У Васи на компьютере есть эта игра, но ему кажется, что все карты, которые в ней есть, некрасивые и неинтересные. Поэтому он решил нарисовать свои. При этом он хочет, чтобы карты, которые он нарисует, после того, как они будут открыты, выглядели красиво.
У Васи есть рисунки, нарисованные на клетчатой бумаге следующим образом: некоторые клетки закрашены в черный цвет, а некоторые оставлены белыми. Вася хочет по каждому такому рисунку сделать соответствующее ему поле для игры в «Сапера» по следующему правилу: если на рисунке клетка покрашена в черный цвет, то на этом месте должна быть либо мина, либо число от 1 до 8, если же клетка оставлена белой, то на игровом поле она должна быть пустой.
Напишите программу, которая сделает это за Васю.
В первой строке входного файла содержатся числа \(m\) и \(n\) (1 ≤ \(m\), \(n\) ≤ 100) – количество строк и столбцов соответственно. Далее идет таблица из \(m\) строк, по \(n\) чисел в каждой строке, задающая Васин рисунок. Каждое число в таблице равно 0 или 1, число 0 означает, что соответствующая клетка на рисунке белая, 1 – черная. Числа в строках разделяются пробелами.
Выходной файл должен содержать \(m\) строк по \(n\) символов – карту игрового поля, \(j\)-ый символ \(i\)-ой строки должен содержать символ «*» (звездочка) если в клетке (\(i\),\(j\)) стоит мина, цифру от 1 до 8, если в этой клетке стоит соответствующее число, либо «.» (точка), если клетка (\(i\),\(j\)) пустая. Символы пробелами не разделяйте. Если построить поле, соответствующее рисунку, невозможно, выходной файл должен содержать одну строку с сообщением «No solution».
3 5 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
***** 23332 .....
3 3 0 1 0 0 0 0 0 0 0
No solution
Недавно один известный художник-абстракционист произвел на свет новый шедевр – картину «Два черных непересекающихся прямоугольника». Картина представляет собой прямоугольник \(m\)×\(n\), разбитый на квадраты 1×1, некоторые из которых закрашены любимым цветом автора – черным. Федя – не любитель абстрактных картин, однако ему стало интересно, действительно ли на картине изображены два непересекающихся прямоугольника. Помогите ему это узнать. Прямоугольники не пересекаются в том смысле, что они не имеют общих клеток.
Первая строка входного файла содержит числа \(m\) и \(n\) (1 ≤ \(m\), \(n\) ≤ 200). Следующие \(m\) строк содержат описание рисунка. Каждая строка содержит ровно \(n\) символов. Символ «.» обозначает пустой квадрат, а символ «#» – закрашенный.
Если рисунок можно представить как два непересекающихся прямоугольника, выведите в первой строке «YES», а в следующих m строках выведите рисунок в том же виде, в каком он задан во входном файле, заменив квадраты, соответствующие первому прямоугольнику на символ «a», а второму – на символ «b». Если решений несколько, выведите любое.
Если же этого сделать нельзя, выведите в выходной файл «NO».
2 1 # .
NO
2 2 .. ##
YES .. ab
1 3 ###
YES abb
3 1 . # #
YES . a b
Енот Вася — начинающий художник. Недавно он приобрёл подержанную кисточку (как рассказал продавец, она сделана из хвоста самого Малевича!), достал холст и решил произвести на свет свой первый шедевр.
Как оказалось, лет кисточке немало, потому она способна лишь ставить кляксы в форме пяти квадратиков, расположенных крестиком (координаты их центров будут равны (\(x\), \(y\)), (\(x\)−1, \(y\)), (\(x\), \(y\)−1), (\(x\)+1, \(y\)), (\(x\), \(y\)+1)). Вася поставил \(N\) клякс, разочаровался в идее первого шедевра и задумался о месте для нового. Но ведь если он закрасил весь холст, писать будет негде...
Выясните, закрасил ли своими действиями Вася весь холст.
Первая строка входного файла содержит три целых числа \(W\), \(H\) и \(N\) — ширину и высоту холста в квадратиках (1 \(\le\) \(W\), \(H\) \(\le\) \(10^9\)) и количество клякс, поставленных Васей (0 \(\le\) \(N\) \(\le\) \(10^6\)). Следующие \(N\) строк содержат по два целых числа \(x_i\), \(y_i\) каждая — координаты среднего квадратика \(i\)-й кляксы (−\(10^9\) \(\le\) \(x_i\), \(y_i\) \(\le\) \(10^9\)). Клетка (\(x\), \(y\)) находится на холсте, если 1 \(\le\) \(x\) \(\le\) \(W\) и 1 \(\le\) \(y\) \(\le\) \(H\). Части клякс, оказавшиеся вне холста, не учитываются.
Выведите «Yes», если Вася закрасил весь холст, и «No» в противном случае.
Опишите на русском языке или на одном из языков программирования алгоритм подсчёта суммы всех отрицательных элементов заданного целочисленного массива размером 30 элементов. Если отрицательных элементов нет, выведите NO.
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-15
Опишите на русском языке или на одном из языков программирования алгоритм подсчёта произведения всех отрицательных элементов заданного целочисленного массива размером 30 элементов, в предположении, что в массиве есть хотя бы один отрицательный элемент.