---> 118 задач <---
Источники
    Личные олимпиады(938 задач)
    Командные олимпиады(684 задач)
Страница: << 1 2 3 4 5 6 7 >> Отображать по:
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Дан набор натуральных чисел: a1, …, aN. По этому набору строится таблица чисел размером N x N по следующему правилу: в клетку i-го столбца j-й строки записывается большее из чисел ai и aj при ij (если ai = aj, то записывается это число); на пересечении i-го столбца и i-й строки записывается число 0.

Дана таблица чисел. Требуется определить, могла ли она быть построена по данным правилам из какого-либо набора чисел a1, …, aN.

Входные данные

В первой строке входных данных задается натуральное число N – размер таблицы (1N 500). В следующих N строках содержится по N чисел – числа соответствующей строки из таблицы (все числа целые неотрицательные и не превосходят 1 000).

Выходные данные

В одну строку выведите через пробел числа a1, …, aN. Если решений несколько, выведите любое из них. Если набора, удовлетворяющего данной таблице, не существует, выведите одно число "-1".

Примеры
Входные данные
3
0 4 6
4 0 6
6 6 0
Выходные данные
4 4 6
Входные данные
2
0 1
2 0
Выходные данные
-1
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

В некоторых клетках квадрата \(N\) x \(N\) живут микроорганизмы (не более одного в одной клетке). Каждую секунду происходит следующее:
– все микроорганизмы, у которых менее 2-х соседей, умирают от скуки (соседями называются микроорганизмы, живущие в клетках, имеющих общую сторону или вершину);
– все микроорганизмы, у которых более 3-х соседей, умирают от перенаселенности;
– на всех пустых клетках, у которых ровно в трех соседних клетках жили микроорганизмы, появляются новые микроорганизмы.
Все изменения происходят одновременно, то есть для каждой клетки сначала выясняется ее судьба, а затем происходят изменения сразу во всех клетках.
Требуется по данной конфигурации определить, во что она превратится через \(T\) секунд.

Входные данные

В первой строке вводятся два натуральных числа – \(N\) (1 ≤ \(N\) ≤ 10) и \(T\) (1 ≤ \(T\) ≤ 100). Далее записано \(N\) строчек по \(N\) чисел, описывающих начальную конфигурацию (0 – пустая клетка, 1 – микроорганизм). Числа в строках разделены пробелами.

Выходные данные

Требуется вывести \(N\) строк по \(N\) чисел – описание конфигурации через \(T\) секунд (в том же формате, как и во входных данных).

Примеры
Входные данные
3 1
1 0 1
1 0 1
1 0 1
Выходные данные
0 0 0 
1 0 1 
0 0 0 
Входные данные
2 2
1 1
1 1
Выходные данные
1 1 
1 1 
Входные данные
5 10
1 0 1 1 0
0 1 0 0 0
0 0 0 1 0 
0 0 0 0 0
0 1 0 1 0
Выходные данные
0 1 1 0 0 
0 1 1 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Из шахматной доски по границам клеток выпилили связную (не распадающуюся на части) фигуру без дыр. Требуется определить ее периметр.

Входные данные

Сначала вводится число \(N\) (1 ≤ \(N\) ≤ 64) – количество выпиленных клеток. В следующих \(N\) строках вводятся координаты выпиленных клеток, разделенные пробелом (номер строки и столбца – числа от 1 до 8). Каждая выпиленная клетка указывается один раз.

Выходные данные

Выведите одно число – периметр выпиленной фигуры (сторона клетки равна единице).

Пояснения к примерам

1) Вырезан уголок из трех клеток. Сумма длин его сторон равна 8.

2) Вырезана одна клетка. Ее периметр равен 4.

Примеры
Входные данные
3
1 1
1 2
2 1
Выходные данные
8
Входные данные
1
8 8
Выходные данные
4
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Пастбище представляет собой прямоугольник, разбитый на \(N\) x \(N\) клеток. В каждой клетке растет трава, имеющая свою калорийность (во всех клетках калорийность травы разная). В левой нижней клетке стоит корова Мурка. Съев всю траву в своей клетке, она перемещается на одну клетку вправо или на одну клетку вверх, всегда выбирая ту из клеток, калорийность травы в которой больше (за пределами поля трава не растет). В конце концов корова приходит в правую верхнюю клетку. Требуется определить, сколько всего калорий получит корова (считая калории травы в первой и в последней клетках).

Входные данные

Сначала вводится число \(N\) – размер поля (2 ≤ \(N\) ≤ 10). В следующей строке вводятся через пробел числа, задающие количество калорий в клетках верхнего ряда, в следующей – количество калорий в клетках следующего ряда, …, в последней – количество калорий в клетках нижнего ряда. Все числа – различные, натуральные, не превосходящие 100.

Выходные данные

Требуется вывести количество калорий, которое получит корова.

Примеры
Входные данные
2
37 82
23 52
Выходные данные
157
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Сережа играет в "Морской бой". Поле для игры представляет собой квадрат 10 x 10 клеток. На поле отмечены клетки, в которые Сережа уже стрелял. Однако, пока он не попал ни в один корабль противника. Требуется определить максимальную длину корабля, который может поместиться в небитых клетках этого поля. Корабль представляет из себя прямоугольник ширины 1 и располагается горизонтально или вертикально. (Гарантируется, что на поле есть хотя бы одна небитая клетка.)

Входные данные

Вводятся 10 строк по 10 чисел в каждой, числа разделены пробелами. Число 1 означает, что в соответствующую клетку стреляли, число 0 – что в клетку не стреляли.

Выходные данные

Требуется вывести одно число от 1 до 10 – максимальную возможную длину корабля.

Примеры
Входные данные
0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 1 0 0
0 0 0 1 0 0 1 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 1 0 0 1 0 0 0
0 0 1 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0
Выходные данные
10

Страница: << 1 2 3 4 5 6 7 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест