Темы --> Информатика --> Алгоритмы --> Жадный алгоритм
---> 71 задач <---
Источники
    Личные олимпиады(938 задач)
    Командные олимпиады(684 задач)
Страница: << 7 8 9 10 11 12 13 >> Отображать по:
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

Юный программист решил придумать собственную игру. Игра происходит на поле размером \(N \times N\) клеток, в некоторых клетках которого расположены города (каждый город занимает одну клетку; в каждой клетке может располагаться не более одного города). Всего должно быть чётное количество городов.

Изначально про каждую клетку игрового поля известно, расположен ли в ней город или нет. Чтобы начать игру, необходимо разделить игровое поле на два государства так, чтобы в каждом государстве было поровну клеток-городов.

Граница между государствами должна проходить по границам клеток таким образом, чтобы из любой клетки каждого государства существовал путь по клеткам этого же государства в любую другую его клетку (из клетки можно перейти в соседнюю, если они имеют общую сторону). Каждая клетка игрового поля должна принадлежать только одному из двух государств, при этом государства не обязаны состоять из одинакового количества клеток.

Требуется написать программу, которая с учетом сказанного разделит клетки заданного игрового поля между двумя государствами.

Входные данные

Первая строка входного файла содержит одно целое положительное число N, задающее размер игрового поля (\(1 \leq N \leq 50\)).

Последующие N строк содержат по \(N\) заглавных латинских букв (без пробелов), кодирующих соответствующие клетки игрового поля: ‘C’ обозначает клетку, занятую городом, ‘D’ – пустую клетку. Гарантируется, что на поле есть хотя бы два города и всего их четное число.

Выходные данные

Выходной файл должен содержать \(N\) строк по \(N\) цифр (без пробелов) в каждой, кодирующих соответствующие клетки. Цифра 1 обозначает, что данная клетка принадлежит первому государству, цифра 2 – данная клетка принадлежит второму государству. Если решений несколько, необходимо вывести любое из них.

Система оценивания

Правильные решения для тестов, в которых всего два города, будут оцениваться из 40 баллов.

Несмотря на выделение отдельной группы тестов с двумя городами, на окончательную проверку будут приниматься только решения, правильно работающие также для всех тестов из условия задачи.

Примеры
Входные данные
3
DDD
DDC
DDC
Выходные данные
111
111
112
Входные данные
5
DDDDD
CDCDC
DCCDC
DDDDD
DDDDD
Выходные данные
11111
11111
12222
22222
22222
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

Вася очень любит различные игры: шашки, шахматы, домино, крестики-нолики и т. д. Поскольку он играет в них уже достаточно давно, он успел изучить эти игры достаточно хорошо, и они стали скучными. Поэтому он теперь изобретает новые игры на основе тех, в которые уже наигрался. Недавно он изобрел игру «Доминошахматы».

Она состоит в следующем: Вася берет у дедушки большой кусок фанеры и раскрашивает его так, что у него получается шахматная доска размера N × M клеточек. Потом он берет кости домино и пытается покрыть ими полученную доску так, чтобы все клеточки были закрыты, не было наложений и никакие доминошки не торчали за края доски (каждая доминошка покрывает две соседние клетки).

Поскольку Вася не спрашивает разрешения у дедушки прежде, чем взять доску, он иногда берет ненужные доски, а иногда и те, которые дедушка хотел использовать в строительстве новой дачи. Как раз сегодня Вася взял «нужную» доску, поэтому дедушка был вынужден вырезать из Васиной доски два квадрата по одной клеточке.

Вася сначала огорчился, что не сможет поиграть в свою игру. А потом решил попробовать замостить доску с уже вырезанными клетками, причем так, чтобы вырезанные клетки не были накрыты доминошками.

Помогите Васе понять, можно ли это сделать.

Входные данные

В первой строке входных данных записаны числа N и M — размеры доски (1 ≤ N ≤ 200, 1 ≤ M ≤ 200, N·M > 2).

Во второй строке вводятся через пробел два целых числа — координаты x1 и y1 первой вырезанной клетки (1 ≤ x1 ≤ N, 1 ≤ y1 ≤ M).

В третьей строке вводятся через пробел два целых числа — координаты x2 и y2 второй вырезанной клетки (1 ≤ x2 ≤ N, 1 ≤ y2 ≤ M).

Первая и вторая клетки не совпадают.

Выходные данные

Выведите «YES», если доску с вырезанными клеточками можно покрыть доминошками, и «NO» в противном случае. (Запас доминошек у Васи бесконечный.)

Примеры
Входные данные
2 2
1 1
2 2
Выходные данные
NO
Входные данные
2 2
1 1
1 2
Выходные данные
YES
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
8 megabytes

Ваш младший брат Петя недавно получил домашнее задание и ему нужна ваша помощь. Учитель дал ему последовательность чисел, которую требуется отсортировать в возрастающем порядке. Во время сортировки можно менять местами два любых числа. Каждый обмен имеет стоимость, равную сумме чисел, которые в него входят.

Напишите программу, которая найдет минимальную стоимость такой сортировки заданной последовательности.

Входные данные

Входной файл содержит две строки. Первая строка содержит положительное целое число n (1000 > n > 1) — количество чисел, которые требуется отсортировать. Вторая строка содержит n различных чисел (каждое положительное и не больше 1000), которые надо отсортировать.

Выходные данные

Выведите одну строку, содержащую минимальную стоимость сортировки чисел как показано в примере.

Примеры
Входные данные
3
3 2 1
Выходные данные
4
Входные данные
4
8 1 2 4
Выходные данные
17
Входные данные
5
1 8 9 7 6
Выходные данные
41
Входные данные
6
8 4 5 3 2 7
Выходные данные
34
#111765
  
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes

На плоскости задано N точек.

Напишите программу, которая найдет сумму квадратов расстояний между всеми парами точек.

Входные данные

Первая строка входного файла содержит единственное натуральное число N ( 1 ≤ N ≤ 100000 ) — количество точек. Последующие N строк содержат по два целых числа X и Y ( - 10000 ≤ X , Y ≤ 10000 ) — координаты точек.

Выходные данные

Единственная строка выходного файла должна содержать одно целое число — сумму квадратов расстояний между всеми парами точек.

Примеры
Входные данные
4
1 1
-1 -1
1 -1
-1 1
Выходные данные
32
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Имеется 10 колб с водой и известен объем воды в каждой из них. За одно “касание” можно взять одну колбу и часть воды (или всю воду) из этой колбы разлить по одной или нескольким другим колбам в любом количестве. За какое наименьшее количество “касаний” можно уравнять объемы воды во всех колбах? Каждая колба может вместить любой объем воды.

Входные данные

Программа получает на вход 10 целых чисел \(a_i\), каждое записанное в отдельной строке \(--\) объем воды в каждой из колб. Все числа — целые, от 0 до 100.

Выходные данные

Выведите одно целое число — минимальное количество “касаний”, за которое можно уравнять объемы воды во всех колбах.

Примечание к примеру
В примере можно из первой колбы перелить 20 во вторую, оставляя в первой колбе 10. Затем из второй колбы разлить воду по всем остальным колбам так, чтобы в каждой из колб оказалось по 10.
Примеры
Входные данные
30
26
2
3
4
5
6
7
8
9
Выходные данные
2

Страница: << 7 8 9 10 11 12 13 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест