---> 21 задач <---
Источники
    Личные олимпиады(938 задач)
    Командные олимпиады(684 задач)
Страница: << 1 2 3 4 5 >> Отображать по:
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes
Требуется подсчитать остаток от деления длинного числа на цифру.

Напишите программу, вычисляющую остаток от деления заданного «длинного» числа на заданную цифру.

Входные данные

В первой строке задана цифра K (1≤K≤9). Во второй строке задано натуральное число N, состоящее из не более чем 250 цифр.

Выходные данные

Выведите остаток от деления N на K.

Примеры

Входные данные
Выходные данные

5

123456789

4

1

123

0

ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes
Часы идут вдвое медленнее. В один момент известно настоящее время и то, которое показывают в этот момент часы. Требуется определить, какое настоящее время будет в тот момент, когда часы показывают заданное время.

В часах села батарейка, и они стали идти вдвое медленнее. Когда на часах было x1 часов y1 минут, правильное время было a1 часов b1 минут. Сколько времени будет на самом деле, когда часы в следующий раз покажут x2 часов y2 минут.

Входные данные

Заданы числа x1, y1, a1, b1, x2, y2 в указанном порядке. Все числа целые. Числа x1, a1, x2 — от 0 до 23, числа y1, b1, y2 — от 0 до 59.

Выходные данные

Выведите два числа a2, b2, определяющие сколько будет времени на самом деле, когда на часах будет x2 часов y2 минут.

Примеры

Входные данные
Выходные данные


12 34

10 34

12 35

10 36

12 34

10 0

2 34

14 0

ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes

В стране Флатландия решили построить легкоатлетический манеж с M одинаковыми прямолинейными беговыми дорожками. Они будут покрыты полосами из синтетического материала пружинкин. На складе имеются N полос пружинкина, длины которых равны 1, 2, …, N метров соответственно (i-я полоса имеет длину i метров).

Было решено использовать все полосы со склада, что определило длину дорожек манежа. Полосы пружинкина должны быть уложены без перекрытий и промежутков. Разрезать полосы на части нельзя. Полосы укладываются вдоль дорожек, ширина полосы пружинкина совпадает с шириной беговой дорожки.

Требуется написать программу, которая определяет, можно ли покрыть всем имеющимся материалом M дорожек, и если это возможно, то распределяет полосы пружинкина по дорожкам.

Входные данные

Во входном файле содержатся два целых числа, разделенных пробелом: M — количество дорожек и N — количество полос пружинкина (1 ≤ M ≤ 1000, 1 ≤ N ≤ 30000).

Выходные данные

В случае, если распределить имеющиеся полосы пружинкина на M дорожек одинаковой длины невозможно, то в выходной файл выведите слово «NO».

В противном случае, в первую строку выведите слово «YES». В последующих M строках дайте описание использованных полос для каждой дорожки в следующем формате: сначала целое число t — количество полос на дорожке, затем t целых чисел — длины полос, которые составят эту дорожку. Если решений несколько, можно вывести любое из них.


В задаче есть группа на первые 17 тестов и она оценивается в 20 баллов. затем идёт потестовая оценка по 2 балла за пройденный тест.

Примеры входных и выходных данных

Ввод

Вывод

2 4

YES

2 1 4

2 3 2

3 4

NO


ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Программист на Северном полюсе работал за компьютером в варежках и поэтому мог набирать только 0 и 1, а клавиша 0 запала. Сможет ли он набрать число, состоящее только из единиц и при этом кратное заданному N?

Входные данные

Программе дано число N (1 ≤ N ≤ 106).

Выходные данные

Вывести минимальное число, удволетворяющее требованию, или "NO" , если такого числа не существует.

Примеры
Входные данные
100
Выходные данные
NO
Входные данные
57
Выходные данные
111111111111111111
ограничение по времени на тест
0.4 second;
ограничение по памяти на тест
64 megabytes

\(N\)-лягушка живет на болоте, на котором в ряд растут бесконечно много кувшинок, пронумерованных слева направо числами 1, 2, 3, ...

Изначально N-лягушка сидит на кувшинке с номером \(K\) (\(K\) > \(N\)). Каждый раз \(N\)-лягушка прыгает на \(N\) кувшинок влево и повторяет это, пока не оказывается на номере, меньше либо равном \(N\). Если она попадает на кувшинку с номером \(N\), то становится счастливой, и дальше никуда не прыгает. Если же она попадает на кувшинку с каким-нибудь номером \(M\) < \(N\), то огорчается, прыгает на \(N\) кувшинок вправо и превращается в \(M\)-лягушку (теперь она будет прыгать на \(M\) клеток влево и мечтать попасть на клетку номер \(M\), а если у нее это не получится, то она превратится в \(X\)-лягушку, и так далее).

Требуется выяснить, исполнятся ли когда-либо мечты \(N\)-лягушки, сидящей изначально на кувшинке с номером \(K\), и если да, то на какой кувшинке она окажется.

Входные данные

Вводятся два натуральных числа \(N\) и \(K\). 1 ≤ \(N\) < \(K\) ≤ 2∙\(10^9\).

Выходные данные

Выведите номер кувшинки, на которой останется \(N\)-лягушка. Если мечты лягушки никогда не исполнятся, выведите одно число 0.

Примеры
Входные данные
2
10
Выходные данные
2

Страница: << 1 2 3 4 5 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест