Страница: 1 Отображать по:
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Саша считает красивыми числа, десятичная запись которых не содержит других цифр, кроме 0 и k (1 k 9). Например, если k = 2, то такими числами будут 2, 20, 22, 2002 и т.п. Остальные числа Саше не нравятся, поэтому он представляет их в виде суммы красивых чисел. Например, если k = 3, то число 69 можно представить так: 69 = 33 + 30 + 3 + 3.

Однако, не любое натуральное число можно разложить в сумму красивых целых чисел. Например, при k = 5 число 6 нельзя представить в таком виде. Но если использовать красивые десятичные дроби, то это можно сделать: 6 = 5.5 + 0.5.

Недавно Саша изучил периодические десятичные дроби и начал использовать и их в качестве слагаемых. Например, если k = 3, то число 43 можно разложить так: 43 = 33.(3) + 3.(3) + 3 + 3.(3).

Оказывается, любое натуральное число можно представить в виде суммы положительных красивых чисел. Но такое разложение не единственно — например, число 69 можно также представить и как 69 = 33 + 33 + 3. Сашу заинтересовало, какое минимальное количество слагаемых требуется для представления числа n в виде суммы красивых чисел.

Требуется написать программу, которая для заданных чисел n и k находит разложение числа n в сумму положительных красивых чисел с минимальным количеством слагаемых.

Формат входных данных

На вход программы поступают два натуральных числа n и k (1 ≤ n ≤ 109; 1≤ k ≤ 9).

Входные данные

На вход программы поступают два натуральных числа n и k (1 ≤ n ≤ 109; 1≤ k ≤ 9).

Выходные данные

Выведите разложение числа n в сумму положительных чисел, содержащих только цифры 0 и k, количество слагаемых в котором минимально. Разложение должно быть представлено в виде:

n=a1+a2+...+am

Слагаемые a1, a2, ..., am должны быть выведены без ведущих нулей, без лишних нулей в конце дробной части. Запись каждого слагаемого должна быть такой, что длины периода и предпериода дробной части имеют минимально возможную длину. Например, неправильно выведены числа: 07.7; 2.20; 55.5(5); 0.(66); 7.(0); 7. ; .5; 0.33(03). Их следует выводить так: 7.7; 2.2; 55.(5); 0.(6); 7; 7; 0.5; 0.3(30).

Предпериод и период каждого из выведенных чисел должны состоять не более чем из 100 цифр. Гарантируется, что хотя бы одно такое решение существует. Если искомых решений несколько, выведите любое. Порядок слагаемых может быть произвольным.

Выходные данные не должны содержать пробелов.

Примечание

Ответ программы для первого примера: 10=10

Ответ программы для второго примера: 42=6+6+6+6+6+6+6

Ответ программы для третьего примера: 57=11+11+11+11+11+1+1

Выводить нужно именно так. Ниже содержится служебная информация в качестве ответа
Примеры
Входные данные
10 1
Выходные данные
1
Входные данные
42 6
Выходные данные
7
Входные данные
57 1
Выходные данные
7
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Петя и Вася нашли на чердаке остатки рыболовной сети своего деда. Часть веревок давно сгнила, и сеть распалась на большое число кусков, каждый из которых состоит не более чем из 50 веревочек единичной длины.

Так как использовать по назначению остатки данной сети было уже нельзя, братья разложили один из найденных кусков на прямоугольном столе так, что веревочки оказались параллельны сторонам стола, и стали играть в следующую игру.

Братья делают ходы по очереди, Петя ходит первым. Своим ходом игрок находит веревочку, являющуюся стороной некоторой целой единичной квадратной ячейки сети (все

четыре образующие ее веревочки целы), и перерезает выбранную веревочку. Проигрывает тот из братьев, который не может сделать очередной ход.Требуется написать программу, которая по описанию куска сети на столе определяет, может ли Петя выиграть при любой игре Васи, и если да, то какой первый ход он должен для этого сделать.

Входные данные

В первой строке входных данных задается число N (1 ≤ N ≤ 50) — количество веревочек единичной длины, из которых состоит кусок сети. Следующие N строк содержат по две пары целых чисел — координаты концов веревочек. Каждая четверка чисел описывает отрезок единичной длины, параллельный одной из осей координат.

Координаты всех точек неотрицательны и не превосходят 50.

Выходные данные

Первая строка выходных данных должна содержать число 1, если Петя может выиграть при любой игре Васи, и число 2, если нет. В случае выигрыша Пети вторая строка должна содержать номер веревочки, которую он должен перерезать первым ходом. Если возможных выигрышных ходов несколько, выведите любой. Веревочки пронумерованы, начиная с 1, в том порядке, в котором они заданы во входных данных.

Примечание

В примере во второй строке выведено два числа. Это сделано для иллюстрации того, какие именно веревочки можно разрезать. Вам требуется вывести любую одну из них.

Максимальная оценка за решение задачи при N ≤ 13 равна 40 баллам.

Примеры
Входные данные
10
2 1 2 0
1 2 2 2
2 2 2 1
0 2 1 2
1 1 2 1
2 0 1 0
1 1 0 1
1 1 1 2
1 0 1 1
0 1 0 2
Выходные данные
1
2 3 
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
128 megabytes

В городе Н при невыясненных обстоятельствах территория одного из заводов превратилась в аномальную зону. Все подъезды к территории были перекрыты, а сама она получила название промзоны. В промзоне находятся N зданий, некоторые из них соединены дорогами. По любой дороге можно перемещаться в обоих направлениях.

Начинающий сталкер получил задание добраться до склада в промзоне. Он нашел в электронном архиве несколько карт территории промзоны. Так как карты составлялись разными людьми, то на каждой из них есть информация только о некоторых дорогах промзоны. Одна и та же дорога может присутствовать на нескольких картах.

В пути сталкер может загружать из архива на мобильный телефон по одной карте. При загрузке новой карты предыдущая в памяти телефона не сохраняется. Сталкер может перемещаться лишь по дорогам, отмеченным на карте, загруженной на данный момент. Каждая загрузка карты стоит 1 рубль. Для минимизации расходов сталкеру нужно выбрать такой маршрут, чтобы как можно меньшее число раз загружать карты. Сталкер может загружать одну и ту же карту несколько раз, при этом придется заплатить за каждую загрузку. Изначально в памяти мобильного телефона нет никакой карты.

Требуется написать программу, которая вычисляет минимальную сумму расходов, необходимую сталкеру, чтобы добраться от входа в промзону до склада.

Входные данные

В первой строке входных данных содержатся два натуральных числа N и K (2 ≤ N ≤ 2000; 1 ≤ K ≤ 2000) — количество зданий промзоны и количество карт соответственно. Вход в промзону находится в здании с номером 1, а склад — в здании с номером N.

В последующих строках находится информация об имеющихся картах. Первая строка описания i-ой карты содержит число ri — количество дорог, обозначенных на i-ой карте. Затем идут ri строк, содержащие по два натуральных числа a и b (1a, bN; ab), означающих наличие на i-ой карте дороги, соединяющей здания a и b. Суммарное количество дорог, обозначенных на всех картах, не превышает 300 000 (r1 + r2 + … + rK ≤ 300 000).

Выходные данные

Выведите одно число — минимальную сумму расходов сталкера. В случае, если до склада добраться невозможно, выведите число –1.

Примеры
Входные данные
12 4
4
1 6
2 4
7 9
10 12
3
1 4
7 11
3 6
3
2 5
4 11
8 9
5
3 10
10 7
7 2
12 3
5 12
Выходные данные
3

Страница: 1 Отображать по:
Выбрано
:
Отменить
|
Добавить в контест