Страница: 1 Отображать по:
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

Новый Президент Тридевятой республики начал свою деятельность с полной ревизии системы общественного транспорта страны. В результате на основе социологических опросов населения было составлено идеальное ежедневное расписание движения междугородних автобусов, утвержденное Парламентом республики.

Более того, было решено заменить весь автобусный парк одинаковыми новыми, очень дорогими, но гораздо более надежными, красивыми и удобными машинами.

Автобусная сеть страны охватывает N городов, занумерованных целыми числами от 1 до N.

Идеальное расписание содержит M ежедневных рейсов, i-й рейс начинается в городе Fi в момент времени Xi и заканчивается в некотором другом городе Gi в момент времени Yi. Продолжительность каждого рейса ненулевая и строго меньше 24 часов. Рейс i выполняется одним из автобусов, находящихся в момент времени Xi в городе Fi.

Новые автобусы не требуют ремонта и могут работать круглосуточно, поэтому автобус, прибывший в некоторый момент времени в некоторый город, всегда готов в тот же самый момент времени или позже отправиться в путь для обслуживания любого другого рейса из данного города. Автобус может выехать из города, только выполняя какой-либо рейс из расписания.

Предполагается, что расписание будет действовать неограниченное время, поэтому может оказаться так, что его невозможно обслужить никаким конечным числом автобусов.

Определите наименьшее количество новых автобусов, достаточное для обеспечения движения по расписанию в течение неограниченного периода времени.

Входные данные

В первой строке задаются целые числа N и М (1 ≤ N, M ≤ 100 000) — количество городов и рейсов автобусов соответственно.

В каждой из следующих M строк содержится описание рейса автобуса: номер города отправления Fi, время отправления Xi, номер города назначения Gi (FiGi), время прибытия Yi, отделенные друг от друга одним пробелом. Время прибытия и отправления задается в формате HH:MM, где HH — часы от 00 до 23, MM — минуты от 00 до 59.

Выходные данные

Выведите одно число — минимально необходимое количество автобусов. Если расписание невозможно обслуживать в течение неограниченного периода времени конечным числом автобусов, выведите число -1.

Примеры
Входные данные
4 6
1 10:00 2 12:00
1 10:00 3 09:00
3 12:00 4 23:00
2 11:00 4 13:00
4 12:00 1 11:00
4 12:00 1 10:30
Выходные данные
8
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

Известный математик Соломон В. Голомб предложил название полимино для связной фигуры, вырезанной из клетчатой бумаги по линиям сетки. Фигура называется связной, если из любой ее клетки можно добраться в любую другую, переходя из клетки в клетку через их общую сторону. Шахматист, добавил Голомб, сказал бы, что из любой клетки полимино можно дойти ладьей в любую другую. На рис. 1 приведены примеры восьми полимино.

 

Полимино


Рис. 1


Саша увлекается полимино. Для своих экспериментов она вырезает новое полимино из бумаги в клеточку или из старых полимино, оставшихся после предыдущих попыток. Далеко не всегда из старого полимино (рис. 2а, слева) можно вырезать новое (рис. 2а, справа). Поэтому Саша может перед вырезанием нового полимино разделить каждую клетку старого полимино на K2 одинаковых квадратных клеток меньшего размера (см. рис. 2б, здесь K = 2).

2


         Рис. 2а                                                                   Рис. 2б


Сашу заинтересовало, сколько существует различных способов вырезать новое полимино из старого при заданном значении K, если повороты, отражения и переворачивания как нового полимино, так и старого, недопустимы.

Например, на рис. 2б приведены все возможные способы вырезания полимино, приведенного на рис. 2а, при K = 2.

Напишите программу, которая ответит на интересующий Сашу вопрос.

Входные данные

Первая строка входных данных содержит число K (1 ≤ K ≤ 10 000).

Далее следуют описания двух полимино, сначала нового, затем старого. Каждое полимино задается следующим образом — в первой строке описания задаются размеры H (высота) и W (ширина) минимально возможного прямоугольника, в котором можно разместить данное полимино. Следующие Н строк содержат по W символов описания клеток. При этом клетка, входящая в полимино, обозначается символом « X» (прописная латинская буква «икс»), а не входящая — символом «.» (точка). Количество клеток в каждом полимино не превышает 300.

Выходные данные

Выведите одно число — количество различных способов вырезать заданное новое полимино из старого, каждая клетка которого разбита на K2 клеток.


Примеры
Входные данные
2
6 6
XXXXXX
X....X
X....X
X....X
X....X
XXXXXX
5 5
XXXXX
XXXXX
XX.XX
XXXXX
XXXXX
Выходные данные
9
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Король Полигонии Трианг IV помешан на реформах. Чтобы войти в мировую историю, он решил провести территориальную реформу в своей стране. Страна Полигония имеет форму простого многоугольника, то есть ее граница не имеет самопересечений и самокасаний. В Полигонии большую роль играют внутренние диагонали — отрезки, соединяющие вершины государственной границы и полностью проходящие по территории страны, не касаясь границы. При этом форма Полигонии такова, что никакие две внутренние диагонали не лежат на одной прямой.

Вместо традиционного деления государства на административные округа король Трианг IV решил разделить свою страну на административные треугольники внутренними диагоналями. Для сокращения управляющего аппарата король повелел подготовить такой план деления страны, в котором количество административных треугольников будет минимальным.

Требуется написать программу, выполняющую деление Полигонии внутренними диагоналями на минимально возможное число административных треугольников.

Формат входных данных

В первой строке входных данных задается число N (3 ≤ N 20) — количество вершин многоугольника, образующего границу Полигонии. В следующих N строках находятся по 2 целых числа, по абсолютной величине не превосходящих 10 000 — координаты вершин в порядке обхода многоугольника против часовой стрелки. Гарантируется, что никакие три последовательные вершины многоугольника не лежат на одной прямой, и он не имеет самопересечений и самокасаний. Также гарантируется, что никакие две диагонали, содержащиеся внутри многоугольника, не лежат на одной прямой.

Формат выходных данных

В первую строку  выведите наименьшее количество административных треугольников, на которое можно разбить Полигонию.

Во вторую строку выведите количество различных внутренних диагоналей K, с помощью которых можно произвести данное разбиение.

В каждую из следующих K строк выведите 4 целых числа — координаты начала и конца соответствующей диагонали разбиения, полностью лежащей внутри многоугольника и не проходящей по его границе.

Если искомых разбиений несколько, выведите любое из них.

Примеры

Входные данные

Выходные данные

Рисунок к тесту

4
0 0
1 0
1 1
0 1

2
1
1 1 0 0

1

10
-6 0
0 2
6 0
3 3
6 4
2 4
0 6
-2 4
-6 4
-3 3

4
3
2 4 -2 4
0 2 3 3
-3 3 0 2

2

Страница: 1 Отображать по:
Выбрано
:
Отменить
|
Добавить в контест