Страница: 1 Отображать по:
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes
Блохи сидят на клетках шахматного поля и ходят конем. Должны собраться в одной из клеток. Определить сумму длин кратчайших путей.

На клеточном поле, размером \(N\)x\(M\) (2 ≤ \(N\), \(M\) ≤ 250) сидит \(Q\) (0 ≤ \(Q\) ≤ 10000) блох в различных клетках. "Прием пищи" блохами возможен только в кормушке - одна из клеток поля, заранее известная. Блохи перемещаются по полю странным образом, а именно, прыжками, совпадающими с ходом обыкновенного шахматного коня. Длина пути каждой блохи до кормушки определяется как количество прыжков. Определить минимальное значение суммы длин путей блох до кормушки или, если собраться блохам у кормушки невозможно, то сообщить об этом. Сбор невозможен, если хотя бы одна из блох не может попасть к кормушке.

Входные данные

В первой строке входного файла находится 5 чисел, разделенных пробелом: \(N\), \(M\), \(S\), \(T\), \(Q\). \(N\), \(M\) - размеры доски (отсчет начинается с 1); \(S\), \(T\) - координаты клетки - кормушки (номер строки и столбца соответственно), \(Q\) - количество блох на доске. И далее \(Q\) строк по два числа - координаты каждой блохи.

Выходные данные

Содержит одно число - минимальное значение суммы длин путей или -1, если сбор невозможен.

Примеры
Входные данные
2 2 1 1 1
2 2
Выходные данные
-1
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes
Заданы две последовательности чисел: объем продукции и процент брака. Требуется найти наибольшую подпоследовательность, в которой объем продукции растет, а процент брака падает.

Один из цехов завода производит продукцию в течение \(N\) месяцев. Начальнику цеха было поручено составить отчет о росте производительности данного цеха и об уменьшении доли некачественной продукции в процентном соотношении (точность доли процента до одного знака после запятой, например, 2/7=0.(285714) ≈ 28.6%). При этом в отчет должна войти информация как можно за большее число месяцев \(K\) (\(K\) ≤ \(N\)) работы цеха. Начальник цеха решил, что он включит в отчет данные только по тем месяцам (не обязательно взятым подряд, но обязательно в хронологическом порядке), по которым наблюдается строгий рост количества производимой продукции и строгий спад доли бракованных товаров по сравнению с данными предыдущего месяца, вошедшего в отчет. Определить, какое максимальное количество месяцев удовлетворяет этим условиям и сколько есть возможных вариантов составления отчета.

Входные данные

Первая строка файла содержит число \(N\) (1 ≤ \(N\) ≤ 40) - количество месяцев работы цеха. Далее следует N строк, содержащих целые числа \(v_i\) (1 ≤ \(v_i\) ≤ 10000) и \(b_i\) (1 ≤ \(b_i\) ≤ \(v_i\)); \(v_i\) - объем продукции, произведенной цехом за \(i\)-ый месяц; \(b_i\) - количество бракованной продукции в \(i\)-ом месяце.

Выходные данные

Первая строка файла содержит число \(K\) - количество месяцев, по которым будет включена в отчет информация о работе цеха. Вторая строка содержит число \(P\) - количество возможных вариантов составления отчета с максимальным содержанием.

Примеры
Входные данные
10
313 100
313 106
442 106
442 104
475 104
475 102
539 102
539 109
682 109
682 111
Выходные данные
5
32

Страница: 1 Отображать по:
Выбрано
:
Отменить
|
Добавить в контест