Темы --> Информатика --> Алгоритмы --> Алгоритмы поиска
    Линейный поиск(29 задач)
    Бинарный поиск(101 задач)
    Порядковые статистики(3 задач)
    Поиск подстроки в строке(1 задач)
    Тернарный поиск(8 задач)
    "Два указателя"(18 задач)
---> 3 задач <---
    2004(7 задач)
    2005(7 задач)
    2006(8 задач)
    2007(8 задач)
    2008(8 задач)
    2011(5 задач)
    2012(14 задач)
    2013(14 задач)
    2014(14 задач)
    2015(14 задач)
    2016(15 задач)
Страница: 1 Отображать по:
Есть один листок и два ксерокса. Необходимо определить время, за которое можно получить N копий исходного листка. Первый ксерокс копирует страницу за X секунд, второй - за Y.

Сегодня утром жюри решило добавить в вариант олимпиады еще одну, Очень Легкую Задачу. Ответственный секретарь Оргкомитета напечатал ее условие в одном экземпляре, и теперь ему нужно до начала олимпиады успеть сделать еще N копий. В его распоряжении имеются два ксерокса, один из которых копирует лист за х секунд, а другой – за y. (Разрешается использовать как один ксерокс, так и оба одновременно. Можно копировать не только с оригинала, но и с копии.) Помогите ему выяснить, какое минимальное время для этого потребуется.

Входные данные

На вход программы поступают три натуральных числа N, x и y, разделенные пробелом (1 ≤ N ≤ 2∙108, 1 ≤ x, y ≤ 10).

Выходные данные

Выведите одно число – минимальное время в секундах, необходимое для получения N копий.

Примеры
Входные данные
4 1 1
Выходные данные
3
Входные данные
5 1 2
Выходные данные
4
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

В столице одной Очень Демократической Страны все жители в 8 часов утра одновременно выходят со станций метро, ближайших к месту своей работы, и дальше добираются до работы на автобусах. Мэр города хочет построить еще одну станцию метро так, чтобы после этого время, к которому все люди доберутся до места своей работы (то есть время, когда последний работник окажется на работе), было наименьшим возможным.

Автобусное сообщение в столице устроено следующим образом. Есть N автобусных остановок, в частности, возле каждой станции метро расположено по остановке. Между N – 1 парой остановок постоянно курсируют автобусы, время движения от одной остановки до другой – 1 минута. Временем ожидания и пересадки можно пренебречь. Автобусное сообщение в столице организовано так, что от любой автобусной остановки до любой другой можно добраться на автобусах (возможно, с пересадками).

Входные данные

В первой строке входных данных содержатся два числа N и M – количество автобусных остановок и станций метро соответственно (2 ≤ N ≤ 50 000, 1 ≤ M1 000, M < N).

Во второй строке задаются через пробел M чисел – номера автобусных остановок, рядом с которыми есть станции метро (каждая – не более одного раза).

В следующих N1 строках записано по два числа – номера автобусных остановок, между которыми курсирует автобус. (Автобус ходит в обоих направлениях. Каждый маршрут указан один раз.)

Выходные данные

Выведите два числа – сначала наибольшее время за которое кто-то будет и после строительства добираться на работу, а затем номер автобусной остановки, рядом с которой следует построить новую станцию метро. (Строить можно возле тех автобусных остановок, возле которых еще нет станций метро). Если решений несколько, выведите одно из них.

Подзадачи и система оценки

Данная задача содержит две подзадачи. Для оценки каждой подзадачи используется своя группа тестов. Баллы за подзадачу начисляются только в том случае, если все тесты из этой группы пройдены.

Подзадача 1 (40 баллов)

В этой подзадаче \(N \leq 2000\)

Подзадача 2 (60 баллов)

Дополнительные ограничения отсутствуют.

Примеры
Входные данные
8 2
1 2
1 2
1 3
1 4
2 5
2 6
6 7
6 8
Выходные данные
1
6
Входные данные
8 2
5 3
1 2
1 3
1 4
2 5
2 6
6 7
6 8
Выходные данные
2
6
Заданы начальные координаты и скорости кораблей на плоскости. Есть бомбы, уничтожающие корабли на расстоянии не превышающем R от центра взрыва. Взрывать бомбы можно только в целые моменты времени. Требуется уничтожить все корабли наименьшим количеством бомб.

N вражеских кораблей движутся прямолинейно с постоянными скоростями. Вакуумная бомба уничтожает все объекты в радиусе R от точки взрыва (то есть все объекты, расстояние от которых до точки взрыва не больше R). Взрывать бомбу можно только в целые моменты времени.

Требуется определить, за какое наименьшее количество взрывов можно уничтожить все корабли, а также в какие моменты времени и в каких точках для этого следует произвести взрывы. Время отсчитывается от момента, когда координаты движущихся кораблей были определены со спутника.

Входные данные

В первой строке входных данных задаются целые числа N (2 <= N <= 10) и R (0 < R ≤ 50. В следующих Nстроках  содержится по 4 числа, описывающих движение кораблей. Первые два числа строки – координаты корабля в момент времени 0, по модулю не превосходящие 105. Следующие два числа – значения координат вектора скорости, по модулю не превосходящие 1000. Все эти числа целые.

Гарантируется, что никакие 2 корабля не имеют одинаковые векторы скорости.Однако вполне возможно, что в какой-то момент времени два корабля пройдут через одну точку.

Выходные данные

В первой строке выведите одно число – минимальное количество взрывов K. В следующих K строках для каждого взрыва выведите по три числа: целое время взрыва и вещественные координаты взрыва, указанные с точностью не менее трех значащих цифр после точки. Разрешается производить взрывы как в разные, так и в один и тот же момент времени. Разрешается взрывы производить как в различных точках, так и в одной точке в разные моменты времени.

Если решений несколько, выведите любое из них.

Комментарий. Решения, верно работающие при N ≤ 3, будут набирать не менее 50 баллов.

Примеры
Входные данные
3 3
-3 3 1 0
0 -6 0 2
-8 6 4 -1
Выходные данные
1
3 2.000 1.500
Входные данные
2 1
-4 -4 2 2
2 2 -2 -2
Выходные данные
2
0 -4.0000 -4.0000
0 2.0000 2.0000

Страница: 1 Отображать по:
Выбрано
:
Отменить
|
Добавить в контест