Темы --> Информатика --> Язык программирования
    Процедуры и функции(96 задач)
    Массивы(232 задач)
    Типы данных(356 задач)
    Циклы(177 задач)
    Условный оператор (if)(164 задач)
    Python(260 задач)
    Standard Template Library(2 задач)
---> 2 задач <---
Страница: 1 Отображать по:
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

В Команде проходит традиционная ежегодная олимпиада по теории магии среди младшекурсников. Завхозу смены Кате Медведевой поручили заняться распределением студентов по аудиториям.

Каждый факультет выставил своих лучших учеников на олимпиаду. От Звездочек участвует G студентов, от Солнышек S студентов, Травинок представляет H студентов и Подсолнухов — R студентов. В распоряжении Медведевой находится M аудиторий. На аудитории наложено особое заклятие расширения, поэтому при необходимости они могут вместить любое количество студентов. При рассадке необходимо учесть, что ученики одного факультета, находящиеся в одной аудитории, могут, воспользовавшись случаем, начать жульничать, обмениваясь идеями по решению задач. Поэтому в любой аудитории количество студентов с одного факультета, попавших в нее, следует свести к минимуму. Назовем рассадку, удовлетворяющую такому требованию, оптимальной.

Помогите посчитать, какое минимальное количество студентов с одного факультета все же придется посадить в одной аудитории даже при оптимальной рассадке.

Входные данные

В первой строке идут четыре целых числа G, S, H и R (1 ≤ G, S, H, R ≤ 1000) — количество учеников, представляющих каждый из факультетов школы.

Во второй строке идет целое число M (1 ≤ M ≤ 1000) — количество классов в распоряжении у завхоза.

Выходные данные

Выведите минимальное количество студентов с одного факультета, которое Кате придётся посадить в одну аудиторию даже при оптимальной рассадке.

Примеры тестов

Входные данные
4 3 4 4
2
Выходные данные
2
Входные данные
15 14 13 14
5
Выходные данные
3

ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Лёша сидел на лекции. Ему было невероятно скучно. Голос лектора казался таким далеким и незаметным...

Чтобы окончательно не уснуть, он взял листок и написал на нём свое любимое слово. Чуть ниже он повторил своё любимое слово, без первой буквы. Ещё ниже он снова написал своё любимое слово, но в этот раз без двух первых и последней буквы.

Тут ему пришла в голову мысль — времени до конца лекции все равно ещё очень много, почему бы не продолжить выписывать всеми возможными способами это слово без какой-то части с начала и какой-то части с конца?

После лекции Лёша рассказал Максу, как замечательно он скоротал время. Максу стало интересно посчитать, сколько букв каждого вида встречается у Лёши в листочке. Но к сожалению, сам листочек куда-то запропастился.

Макс хорошо знает любимое слово Лёши, а ещё у него не так много свободного времени, как у его друга, так что помогите ему быстро восстановить, сколько раз Лёше пришлось выписать каждую букву.

Входные данные

На вход подаётся строка, состоящая из строчных латинских букв — любимое слово Лёши.

Длина строки лежит в пределах от 5 до 100 000 символов.

Выходные данные

Для каждой буквы на листочке Лёши, выведите её, а затем через двоеточие и пробел сколько раз она встретилась в выписанных Лёшей словах (см. формат вывода в примерах). Буквы должны следовать в алфавитном порядке. Буквы, не встречающиеся на листочке, выводить не нужно.

Примеры тестов

Входные данные
hello
Выходные данные
e: 8
h: 5
l: 17
o: 5
Входные данные
abacaba
Выходные данные
a: 44
b: 24
c: 16

Примечание

Пояснение к первому примеру. Если любимое Лёшино слово — "hello", то на листочке у Лёши будут выписаны следующие слова:

  • "hello"
  • "hell"
  • "ello"
  • "hel"
  • "ell"
  • "llo"
  • "he"
  • "el"
  • "ll"
  • "lo"
  • "h"
  • "e"
  • "l"
  • "l"
  • "o"
Среди этих слов 8 раз встречается буква "e", 5 раз — буква "h", 17 раз — буква "l" и 5 раз буква "o".


Страница: 1 Отображать по:
Выбрано
:
Отменить
|
Добавить в контест