Двоичное дерево поиска(24 задач)
Дерево отрезков, RSQ, RMQ(90 задач)
Бор(14 задач)
Дерево Фенвика(6 задач)
Декартово дерево(10 задач)
Лука - торговец картинами. У него есть N клиентов, каждому из которых он продает произведения искусства. Каждый клиент может купить либо цветные картины, либо черно-белые, но не те и другие вместе. При этом клиент под номером i готов купить не более a i цветных картин и не более b i черно-белых картин. При этом каждый клиент хочет купить хотя бы одну картину.
У Луки практически неограниченный запас картин, поэтому запросы клиентов не являются для него проблемой. Однако, Лука не любит продавать черно-белые картины, и если окажется, что меньше, чем C людей купили цветные картины, он очень огорчится.
В силу нестабильной экономической ситуации в стране клиенты постоянно изменяют свои запросы, иными словами количество цветных и черно-белых картин, которые они готовы купить. Из-за этого Лука постоянно задается вопросом: "Сколько у меня есть вариантов, как продать клиентам картины, чтобы хотя бы C человек купили цветные картины?". Помогите Луке и защитите его от излишнего беспокойства.
Первая строка содержит два целых числа N и C ( 1 ≤ N ≤ 105, 1 ≤ C ≤ 20 ). Вторая строка содержит N целых чисел a i ( 1 ≤ a i ≤ 109 ). Третья строка содержит N целых чисел b i ( 1 ≤ b i ≤ 109 ). Четвертая строка содержит одно целое число Q ( 1 ≤ Q ≤ 105 ) - количество изменений требований клиентов. Каждая из следующих Q строк содержит три числа: номер клиента, меняющего требования P ( 1 ≤ P ≤ N ), новое максимальное количество цветных картин, которое он готов купить A p ( 1 ≤ A p ≤ 109 ) и новое максимальное количество черно-белых картин, которое он готов купить B p ( 1 ≤ B p ≤ 109 ).
Выведите Q строк, где в q -й строке записано единственное число - количество вариантов продать картины клиентам, чтобы хотя бы C человек купили цветные картины, по модулю 10007 после первых q изменений требований.
Разбалловка для личной олимпиады
Тесты 4-6 — числа n, q не превосходят 1000. Группа тестов оценивается в 30 баллов.
Тесты 7-13 — Полные ограничения. Группа тестов оценивается в 70 баллов.
2 2 1 1 1 1 1 1 1 1
1
2 2 1 2 2 3 2 1 2 2 2 2 2
4 4
4 2 1 2 3 4 1 2 3 4 1 4 1 1
66
Мирко большой любитель шахмат и программирования, но обычные шахматы уже наскучили ему, поэтому он начал экспериментировать и придумал свою игру. Он взял шахматную доску с N рядами и N столбцами и расположил на ней K ладей. Игра Мирко следует таким правилам: 1. У каждой ладьи есть своя сила, заданная натуральным числом. 2. Ладья видит все клетки поля в своем ряду и своем столбце кроме той, на которой стоит сама. 3. Клетка считается атакованной в том случае, если побитовый XOR сил всех ладей, которые видят эту клетку, положителен. Изначально Мирко некоторым образом расположил ладьи на поле, и теперь собирается сделать P перемещений. Каждый раз он будет брать одну ладью и ставить ее на другую клетку поля (при этом ладья не обязательно будет перемещена вдоль ряда или столбца в котором она стоит). После каждого перемещения, определите сколько клеток на поле атакованы.
Первая строка содержит 3 целых числа N , K , P ( 1 ≤ N ≤ 1000000000 , 1 ≤ K , P ≤ 10000 ). Каждая из следующих K строк содержит 3 натуральных числа R i , C i , X i ( 1 ≤ R i , C i ≤ N , 1 ≤ X i ≤ 1000000000 ), которые обозначают что на клетке ( R i , C i ) стоит ладья с силой X i . Каждая из следующих P строк содержит 4 натуральных числа R 1 , C 1 , R 2 , C 2 ( 1 ≤ R 1, C 1, R 2, C 2 ≤ N ), которые означают что ладья, стоящая на клетке ( R 1, C 1 ), была передвинута на поле ( R 2, C 2 ). Гарантируется, что в момент перемещения на клетке ( R 1, C 1 ) есть ладья и что ни в какой момент времени на одной клетке нет двух и более ладей.
Выведите P строк, где в k -й строке записано единственное число - количество клеток поля, атакованных после первых k перемещений.
2 2 2 1 1 1 2 2 1 2 2 2 1 1 1 1 2
4 0
2 2 2 1 1 1 2 2 2 2 2 2 1 1 1 1 2
4 2
3 3 4 1 1 1 2 2 2 2 3 3 2 3 3 3 3 3 3 1 1 1 1 2 3 1 3 2
6 7 7 9