Страница: 1 2 3 4 5 6 7 >> Отображать по:
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes
Задано N чисел в закольцованном массиве. Разрешается менять два соседних числа, если они отличаются больше чем на 1. Необходимо упорядочить массив.

В витрине ювелирного магазина стоит манекен, на шею которого надето ожерелье. Оно состоит из N колечек, нанизанных на замкнутую нить. Все колечки имеют разные размеры. В зависимости от размера колечки пронумерованы числами от 1 до N, начиная с самого маленького и до самого большого. Колечки можно передвигать вдоль нити и протаскивать одно через другое, но только в том случае, если номера этих колечек отличаются более чем на единицу.

Продавец хочет упорядочить колечки так, чтобы они располагались по возрастанию номеров вдоль нити по часовой стрелке. Снимать ожерелье с манекена нельзя.

Требуется написать программу, которая по заданному начальному расположению колечек находит последовательность протаскиваний колечек одно через другое, приводящую исходное расположение колечек в желаемое.

Входные данные

Первая строка входных данных содержит  число N (2 ≤ N ≤ 50).

Во второй строке через пробел следуют N различных чисел от 1 до N номера колечек, расположенных вдоль нити по часовой стрелке.

Выходные данные

Ваша программа должна вывести описание процесса упорядочения.

В каждой строке выходных данных, кроме последней, должны быть записаны через пробел два числа, указывающие номера колечек, протаскиваемых друг через друга. В последней строке должен стоять ноль.

Количество выводимых строк  не должно превышать 50000.

Если требуемого упорядочения колечек достичь не удается,  программа должна вывести одно число –1

Примеры
Входные данные
4
3 1 2 4
Выходные данные
4 2
4 1
0
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

Известный математик Соломон В. Голомб предложил название полимино для связной фигуры, вырезанной из клетчатой бумаги по линиям сетки. Фигура называется связной, если из любой ее клетки можно добраться в любую другую, переходя из клетки в клетку через их общую сторону. Шахматист, добавил Голомб, сказал бы, что из любой клетки полимино можно дойти ладьей в любую другую. На рис. 1 приведены примеры восьми полимино.

 

Полимино


Рис. 1


Саша увлекается полимино. Для своих экспериментов она вырезает новое полимино из бумаги в клеточку или из старых полимино, оставшихся после предыдущих попыток. Далеко не всегда из старого полимино (рис. 2а, слева) можно вырезать новое (рис. 2а, справа). Поэтому Саша может перед вырезанием нового полимино разделить каждую клетку старого полимино на K2 одинаковых квадратных клеток меньшего размера (см. рис. 2б, здесь K = 2).

2


         Рис. 2а                                                                   Рис. 2б


Сашу заинтересовало, сколько существует различных способов вырезать новое полимино из старого при заданном значении K, если повороты, отражения и переворачивания как нового полимино, так и старого, недопустимы.

Например, на рис. 2б приведены все возможные способы вырезания полимино, приведенного на рис. 2а, при K = 2.

Напишите программу, которая ответит на интересующий Сашу вопрос.

Входные данные

Первая строка входных данных содержит число K (1 ≤ K ≤ 10 000).

Далее следуют описания двух полимино, сначала нового, затем старого. Каждое полимино задается следующим образом — в первой строке описания задаются размеры H (высота) и W (ширина) минимально возможного прямоугольника, в котором можно разместить данное полимино. Следующие Н строк содержат по W символов описания клеток. При этом клетка, входящая в полимино, обозначается символом « X» (прописная латинская буква «икс»), а не входящая — символом «.» (точка). Количество клеток в каждом полимино не превышает 300.

Выходные данные

Выведите одно число — количество различных способов вырезать заданное новое полимино из старого, каждая клетка которого разбита на K2 клеток.


Примеры
Входные данные
2
6 6
XXXXXX
X....X
X....X
X....X
X....X
XXXXXX
5 5
XXXXX
XXXXX
XX.XX
XXXXX
XXXXX
Выходные данные
9
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes

В городе Шахматовске два интернет-провайдера выполняют план по всеобщей интернетизации страны. Город расположен на бесконечной целочисленной решетке, по всем линиям которой проходят прямые улицы, а единичные квадраты сетки определяют кварталы. Координатами квартала считаются координаты вершины левого нижнего угла соответствующего единичного квадрата. Кварталы города окрашены в черный и белый цвета в шахматном порядке, при этом квартал с координатами (0, 0) окрашен в черный цвет.Интернет-провайдер «Черный интернет» занимается подключением кварталов черного цвета. Недавно стало известно, что жителям квартала, подключенного K-м, будет предоставлена скидка в 10%.

В соответствии с планом компании «Черный интернет» интернетизация будет проводиться в течение N дней. В i-й день бригада сотрудников компании движется по какой-то из улиц города, начиная из точки (xi, yi). Бригада проходит li кварталов в заданном направлении. При этом она подключает ранее не подключенные кварталы черного цвета, граничащие по стороне с путем движения бригады (см. рис.).

Требуется написать программу, которая определит координаты квартала, подключенного во время реализации плана K-м по очереди. Гарантируется, что в процессе реализации плана будет подключено не менее K кварталов.

рис. 1 
Рисунок к примеру 1

Входные данные

В первой строке  задаются два целых числа N и K (1 ≤ N ≤ 2 000, 1 ≤ K ≤ 1018).

Далее следуют N строк с описанием плана развития компании. В i-й строке описания плана записан путь бригады в i-й день: xi и yi (–1015xi ≤ 1015, –1015yi ≤ 1015) — координаты начальной точки пути, символ ci — направление движения, и li (1 ≤ li ≤ 1015) — расстояние, которое пройдет бригада. Направление движения задается одним из следующих символов: «N» — север (по увеличению y-координаты), «E» — восток (по увеличению x-координаты), «S» — юг (по уменьшению y-координаты), «W» — запад (по уменьшению x-координаты).

Выходные данные

Выведите  координаты x и y квартала, подключенного K-м.

Примеры
Входные данные
5 19
20 6 S 5
9 7 S 7
9 18 W 1
13 18 N 2
12 13 E 5
Выходные данные
15 13
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes
Есть K тупиков и расписание (время приезда и отъезда) электричек. Необходимо каждую электричку поставить в свободный тупик с минимальным номером.

На вокзале есть K тупиков, куда прибывают электрички. Этот вокзал является их конечной станцией, поэтому электрички, прибыв, некоторое время стоят на вокзале, а потом отправляются в новый рейс (в ту сторону, откуда прибыли).

Дано расписание движения электричек, в котором для каждой электрички указано время ее прибытия, а также время отправления в следующий рейс. Электрички в расписании упорядочены по времени прибытия. Поскольку вокзал — конечная станция, то электричка может стоять на нем довольно долго, в частности, электричка, которая прибывает раньше другой, отправляться обратно может значительно позднее.

Тупики пронумерованы числами от 1 до K. Когда электричка прибывает, ее ставят в свободный тупик с минимальным номером. При этом если электричка из какого-то тупика отправилась в момент времени X, то электричку, которая прибывает в момент времени X, в этот тупик ставить нельзя, а электричку, прибывающую в момент X+1 — можно.

Напишите программу, которая по данному расписанию для каждой электрички определит номер тупика, куда прибудет эта электричка.

Входные данные

Сначала вводятся число K — количество тупиков и число N — количество электропоездов (1≤K≤100000, 1≤N≤100000). Далее следуют N строк, в каждой из которых записано по 2 числа: время прибытия и время отправления электрички. Время задается натуральным числом, не превышающим 109. Никакие две электрички не прибывают в одно и то же время, но при этом несколько электричек могут отправляться в одно и то же время. Также возможно, что какая-нибудь электричка (или даже несколько) отправляются в момент прибытия какой-нибудь другой электрички. Время отправления каждой электрички строго больше времени ее прибытия.

Все электрички упорядочены по времени прибытия. Считается, что в нулевой момент времени все тупики на вокзале свободны.

Выходные данные

Выведите Nчисел — по одному для каждой электрички: номер тупика, куда прибудет соответствующая электричка. Если тупиков не достаточно для того, чтобы организовать движение электричек согласно расписанию,  выведите два числа: первое должно равняться 0 (нулю), а второе содержать номер первой из электричек, которая не сможет прибыть на вокзал.

Примеры
Входные данные
1 1
2 5
Выходные данные
1
Входные данные
1 2
2 5
5 6
Выходные данные
0 2
Входные данные
2 3
1 3
2 6
4 5
Выходные данные
1
2
1
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

На одном из московских вокзалов билеты продают \(N\) касс. Каждая касса работает без перерыва определенный промежуток времени по фиксированному расписанию (одному и тому же каждый день). Требуется определить, на протяжении какого времени в течение суток работают все кассы одновременно.

Входные данные

Сначала вводится одно целое число \(N\) (0 < \(N\) ≤ 1000).

В каждой из следующих \(N\) строк через пробел расположены 4 целых числа, первые два из которых обозначают время открытия кассы в часах и минутах (часы — целое число от 0 до 23, минуты — целое число от 0 до 59), оставшиеся два — время закрытия в том же формате. Числа разделены пробелами.

Время открытия означает, что в соответствующую ему минуту касса уже работает, а время закрытия — что в соответствующую минуту касса уже не работает. Например, касса, открытая с 10 ч. 30 мин. до 18 ч. 30 мин., ежесуточно работает 480 минут.

Если время открытия совпадает с временем закрытия, то касса работает круглосуточно. Если первое время больше второго, то касса начинает работу до полуночи, а заканчивает — на следующий день.

Выходные данные

Требуется вывести одно число — суммарное время за сутки (в минутах), на протяжении которого работают все N касс.

Пояснения к примерам

1) Первая касса работает с часу до 23 часов, вторая – круглосуточно, третья – с 22 часов до 2 часов ночи следующего дня. Таким образом, все три кассы одновременно работают с 22 до 23 часов и с часу до двух часов, то есть 120 минут.

2) Первая касса работает до 14 часов, а вторая начинает работать в 14 часов 15 минут, то есть одновременно кассы не работают.

3) Вместе кассы работают лишь одну минуту – с 14:00 до 14:01 (в 14:01 вторая касса уже не работает).

Примеры
Входные данные
3
1 0 23 0
12 0 12 0
22 0 2 0
Выходные данные
120
Входные данные
2
9 30 14 0
14 15 21 0
Выходные данные
0
Входные данные
2
14 00 18 00
10 00 14 01
Выходные данные
1

Страница: 1 2 3 4 5 6 7 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест