Окружная олимпиада(18 задач)
Региональный этап(109 задач)
Заключительный этап(97 задач)
Строительная компания хочет построить дом, в котором будет \(n\) квадратных комнат. Каждая комната характеризуется своим размером — длиной стены. Обозначим размеры комнат в новом доме как \(a_1\), \(a_2\), …, \(a_n\).
При этом для того, чтобы квартиры в доме активнее распродавались, компания объявила его «Домом оригинальности и гармонии». Оригинальность означает, что размер любой комнаты не должен делиться на размер никакой другой комнаты. Свойство гармонии требует, чтобы площадь любой комнаты делилась на размер каждой из комнат. Иначе говоря, для любых различных \(i\) и \(j\) должны выполняться условия: \(a_i\) не делится на \(a_j\), а \(a_i\)2 делится на \(a_j\).
Требуется по заданному числу n выбрать такие размеры комнат, чтобы выполнялись свойства оригинальности и гармонии. При этом с целью экономии строительных материалов размер каждой комнаты не должен превышать 263 – 1.
Входной файл содержит число \(n\) (1 ≤ \(n\) ≤ 1000).
Выведите в выходной файл размеры комнат — \(n\) положительных целых чисел, не превосходящих 263 – 1. Разделяйте числа пробелами.
2
6523157998489532400 5519595229491142800
Школьнику Васе нравятся числа, которые заканчиваются счастливыми для него цифрами k. Поэтому каждый раз, когда он видит какое-нибудь натуральное число n, он сразу пытается подобрать такое d (d ≥ 2), что число n в системе счисления с основанием d заканчивается как можно большим количеством цифр k.
Требуется написать программу, которая по заданным числам n и k найдет такое d, чтобы число n в системе счисления с основанием d заканчивалось как можно большим количеством цифр k.
Вводятся два целых десятичных числа n и k (1 ≤ n ≤ 1011; 0 ≤ k ≤ 9).
Выведите два числа: d — искомое основание системы счисления и l — количество цифр k, которым заканчивается запись числа n в этой системе счисления. Если искомых d несколько, выведите любое из них, не превосходящее 1012 (такое всегда существует).
Примеры
|
| комментарий |
49 1 | 3 2 | 4910 = 12113 |
7 5 | 3 0 | Ни в одной системе счисления 7 не заканчивается на цифру 5 |
4 4
5 1
9 9
10 1
Суперчислом называется число, являющееся суммой двух простых чисел из диапазона [2…\(B\)]. Требуется найти все суперчисла из заданного диапазона [\(A\)…\(B\)].
Во входном файле даны два числа \(A\) и \(B\) (2 ≤ \(A\) ≤ \(B\) ≤ 40000), определяющие диапазон [\(A\)…\(B\)].
В выходной файл вывести все найденные суперчисла из заданного диапазона в возрастающем порядке.
3 10
4 5 6 7 8 9 10
Дано натуральное число N. Требуется написать программу, которая находит такое минимальное число M, произведение цифр которого равно N.
Вводится целое число N (1 ≤ N ≤ 2·106) .
Выведите на экран одно число M ≥ 10 или фразу «No solution». Число M должно начинаться со значащей цифры (не с нуля).
20
45
1
11