Элементарная геометрия(144 задач)
Многоугольники. Выпуклые оболочки(38 задач)
Клеточная геометрия(8 задач)
Квадродерево(3 задач)
Первый учебный день шестиклассника Пети начался с урока географии. Учитель объяснял классу, что перед тем, как изучать просторы нашей Родины, нужно научиться пользоваться географическими картами. Было также упомянуто и о том, что такое масштаб карты. В качестве домашней работы Пете и его одноклассникам задали нарисовать план (карту) своей комнаты, соблюдая масштабирование. Петю очень заинтересовало задание учителя, и поэтому, как только он пришел из школы домой, он принялся рисовать план. Это занятие было очень увлекательным, но вскоре с работы пришла Петина мама, сказала, что здоровье превыше всего и позвала его обедать. Во время обеда она по пути на кухню зашла в Петину комнату и решила, что ее надо проветрить. Для этого она открыла окно, перед которым стоял Петин стол.
Насытив свой желудок, Петя вернулся в комнату и обнаружил, что его творение сдуло ветром на пол. Сначала он обеспокоился тем, в порядке ли рисунок, но удостоверившись, что все нормально, не стал спешить и поднимать план с пола. Он вспомнил слова учителя географии, который в конце урока поведал им некое нетривиальное утверждение и предложил любопытным проверить его на досуге.
Утверждение гласило: "если взять две карты одной и той же области, сделанные с разным масштабом, и расположить меньшую поверх большей так, что меньшая карта окажется строго внутри большей, то можно найти такую точку (она называется "неподвижная точка"), что то, что изображено в этой точке на обеих картах соответствует одной и той же точке местности". Петя заметил, что пол комнаты можно считать картой комнаты (масштаб 1:1). Он решил найти неподвижную точку для лежащего на полу нарисованного им плана и пола. Но Петя не сумел сделать это самостоятельно, поэтому он обратился к вам за помощью.
Комната Пети и ее план имеют форму прямоугольника. Первая строка входного файла содержит два вещественных числа: ширину X и длину Y комнаты Пети (1≤X≤1000, 1≤Y≤1000). Комната расположена в декартовой прямоугольной системе координат так, что углы комнаты расположены в точках с координатами (0,0), (X,0), (X,Y), (0,Y).
Вторая строка содержит восемь вещественных чисел, описывающих положение углов плана комнаты в той же самой системе координат. Сначала задаются координаты того угла плана, который соответствует углу комнаты с координатами (0,0), затем — (X,0), (X,Y), наконец, (0,Y). Гарантируется, что входные данные корректны, то есть план является прямоугольником, линейные размеры плана находятся в полном соответствии с линейными размерами комнаты, план не выходит за границы комнаты.
Все числа во входном файле вещественные, заданы с точностью 5 знаков после десятичной точки. План выполнен в масштабе не менее 0.0001 и не более 1. Масштаб не может быть равен 1. Карта расположена лицевой стороной вверх.
В первую строку выходного файла выведите 2 вещественных числа — координаты неподвижной точки плана и пола. Ответ нужно выдать с 3 знаками после десятичной точки.
10.00000 5.00000 3.00000 2.50000 1.00000 2.50000 1.00000 1.50000 3.00000 1.50000
2.500 2.083
0 | 2 | 2 | 2 | 2 |
0 | 2 | 2 | 2 | 2 |
1 | 1 | 2 | 2 | 2 |
1 | 1 | 0 | 0 | 0 |
На поле NxM клеток (N строк и M столбцов) положили K прямоугольников один поверх другого в случайном порядке. Длины сторон прямоугольников выражаются целым числом клеток. Прямоугольники не выходят за границы поля. Границы прямоугольников совпадают с границами клеток поля.
Получившуюся ситуацию записали в таблицу чисел (каждой клетке поля соответствует клетка таблицы). Если клетка поля не закрыта прямоугольником, то в соответствующую клетку таблицы записали число 0. Если же клетка закрыта одним или несколькими прямоугольниками, то в соответствующую клетку таблицы записали число, соответствующее номеру самого верхнего прямоугольника, закрывающего эту клетку.
По содержимому таблицы требуется определить положение и размеры прямоугольников.
Гарантируется, что во входных данных содержится информация, которой достаточно для однозначного определения размеров прямоугольников.
В первой строке входного файла записаны целые числа N, M, K (1N200, 1M200, 1K255). Далее следует N строк по M чисел в каждой — содержимое таблицы. Все числа в таблице целые, находятся в диапазоне от 0 до K включительно.
В выходной файл необходимо выдать K строк. Каждая строка должна описывать соответствующий ее номеру прямоугольник четырьмя числами R C H W (R и C должны описывать координаты левого нижнего угла прямоугольника, а H и W — координаты правого верхнего угла). Числа должны разделяться пробелом.
Оси координат устроены следующим образом: начало координат находится в нижнем левом углу поля, а оси координат направлены вдоль сторон поля (ось Ox — вдоль нижней стороны, а ось Oy — вдоль левой стороны). Клетки поля имеют размер 1x1. Таким образом, координаты левого нижнего угла поля — (0,0), правого верхнего — (M,N). Заметьте, что вы должны вывести координаты углов прямоугольников (как точек) в этой системе координат, а не координаты угловых клеток, покрытых прямоугольниками.
4 5 2 0 2 2 2 2 0 2 2 2 2 1 1 2 2 2 1 1 0 0 0
0 0 2 2 1 1 5 4