Элементарная геометрия(144 задач)
Многоугольники. Выпуклые оболочки(38 задач)
Клеточная геометрия(8 задач)
Квадродерево(3 задач)
Вася заасфальтировал один прямоугольный треугольник, а Петя забетонировал другой прямоугольный треугольник. Катеты каждого из треугольников параллельны осям координат. Необходимо определить, забетонировал ли Петя хотя бы одну заасфальтированную точку.
Вам даны 8 целых чисел: x1, y1, a1, b1, x2, y2, a2, b2, где (x1, y1) - координаты прямого угла первого треугольника, а остальные две вершины имеют координаты (x1 + a1, y1) и (x1, y1 + b1). Аналогично, (x2, y2) - координаты прямого угла второго треугольника, а остальные две вершины имеют координаты (x2 + a2, y2) и (x2, y2 + b2). Каждое число по модулю не превосходит 109 и может быть равно нулю.
Выведите YES, если Петя забетонировал хотя бы одну заасфальтированную точку, и NO в противном случае.
3 3 1 1 3 3 -2 -2
YES
3 4 7 -4 6 6 -20 1
NO
Петя нарисовал на клетчатом листке бумаги красивый рисунок прямоугольной формы. Его младшему брату Васе тоже захотелось порисовать, поэтому он вырезал из того же листка бумаги другой прямоугольник. При этом он не делал лишних разрезов, то есть в результате в листке осталась прямоугольная дырка. Кроме того, линии разреза не проходили (даже частично) по границам рисунка Пети. Более того, по границам рисунка не проходили даже продолжения линий разреза.
Ваша задача – по данным о расположении рисунка и прямоугольной дырки определить, испортил ли Вася рисунок старшего брата, другими словами, есть ли на вырезанном Васей прямоугольнике хотя бы маленький фрагмент рисунка Пети.
Вам даны 8 целых чисел - x1, y1, x2, y2, x3, y3, x4, y4, где (x1, y1) - координаты левого нижнего угла рисунка Пети, (x2, y2) - координаты правого верхнего угла рисунка. Аналогично, (x3, y3) - координаты левого нижнего угла вырезанного Васей прямоугольника, (x4, y4) - координаты правого верхнего угла вырезанного прямоугольника. Гарантируется, что данные прямоугольники невырождены (x1 < x2, y1 < y2 и аналогичные неравенства для второго набора координат). Листок был не очень большим, поэтому каждое число по модулю не превосходит 104.
Выведите YES, если Вася испортил рисунок, и NO в противном случае.
1 1 2 2 3 3 4 4
NO
1 1 3 3 2 2 4 4
YES
1 1 4 4 2 2 3 3
YES