---> 9 задач <---
Источники --> Личные олимпиады --> Открытая олимпиада школьников
    2002(9 задач)
    2003(10 задач)
    2004(13 задач)
    2005(12 задач)
    2006(12 задач)
    2007(11 задач)
    2008-2009(19 задач)
    2009-2010(23 задач)
    2010-2011(19 задач)
    2011-2012(8 задач)
    2012-2013(21 задач)
    2013-2014(8 задач)
    2014-2015(8 задач)
Страница: 1 2 >> Отображать по:
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Первый учебный день шестиклассника Пети начался с урока географии. Учитель объяснял классу, что перед тем, как изучать просторы нашей Родины, нужно научиться пользоваться географическими картами. Было также упомянуто и о том, что такое масштаб карты. В качестве домашней работы Пете и его одноклассникам задали нарисовать план (карту) своей комнаты, соблюдая масштабирование. Петю очень заинтересовало задание учителя, и поэтому, как только он пришел из школы домой, он принялся рисовать план. Это занятие было очень увлекательным, но вскоре с работы пришла Петина мама, сказала, что здоровье превыше всего и позвала его обедать. Во время обеда она по пути на кухню зашла в Петину комнату и решила, что ее надо проветрить. Для этого она открыла окно, перед которым стоял Петин стол.

Насытив свой желудок, Петя вернулся в комнату и обнаружил, что его творение сдуло ветром на пол. Сначала он обеспокоился тем, в порядке ли рисунок, но удостоверившись, что все нормально, не стал спешить и поднимать план с пола. Он вспомнил слова учителя географии, который в конце урока поведал им некое нетривиальное утверждение и предложил любопытным проверить его на досуге.

Утверждение гласило: "если взять две карты одной и той же области, сделанные с разным масштабом, и расположить меньшую поверх большей так, что меньшая карта окажется строго внутри большей, то можно найти такую точку (она называется "неподвижная точка"), что то, что изображено в этой точке на обеих картах соответствует одной и той же точке местности". Петя заметил, что пол комнаты можно считать картой комнаты (масштаб 1:1). Он решил найти неподвижную точку для лежащего на полу нарисованного им плана и пола. Но Петя не сумел сделать это самостоятельно, поэтому он обратился к вам за помощью.

Входные данные

Комната Пети и ее план имеют форму прямоугольника. Первая строка входного файла содержит два вещественных числа: ширину X и длину Y комнаты Пети (1≤X≤1000, 1≤Y≤1000). Комната расположена в декартовой прямоугольной системе координат так, что углы комнаты расположены в точках с координатами (0,0), (X,0), (X,Y), (0,Y).

Вторая строка содержит восемь вещественных чисел, описывающих положение углов плана комнаты в той же самой системе координат. Сначала задаются координаты того угла плана, который соответствует углу комнаты с координатами (0,0), затем — (X,0), (X,Y), наконец, (0,Y). Гарантируется, что входные данные корректны, то есть план является прямоугольником, линейные размеры плана находятся в полном соответствии с линейными размерами комнаты, план не выходит за границы комнаты.

Все числа во входном файле вещественные, заданы с точностью 5 знаков после десятичной точки. План выполнен в масштабе не менее 0.0001 и не более 1. Масштаб не может быть равен 1. Карта расположена лицевой стороной вверх.

Выходные данные

В первую строку выходного файла выведите 2 вещественных числа — координаты неподвижной точки плана и пола. Ответ нужно выдать с 3 знаками после десятичной точки.

Примеры
Входные данные
10.00000 5.00000
3.00000 2.50000 1.00000 2.50000 1.00000 1.50000 3.00000 1.50000
Выходные данные
2.500 2.083
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

Найти закопанный пиратами клад просто: всё, что для этого нужно – это карта. Как известно, пираты обычно рисуют карты от руки и описывают алгоритм нахождения клада так: «Встаньте около одинокой пальмы. Пройдите тридцать шагов в сторону леса, потом семнадцать шагов в сторону озера, …, наконец десять шагов в сторону большого булыжника. Клад находится под ним». Большая часть таких указаний просто сводится к прохождению какого-то количества шагов в одном из восьми направлений (1 – север, 2 – северо-восток, 3 – восток, 4 – юго-восток, 5 – юг, 6 – юго-запад, 7 – запад, 8 – северо-запад) (см. рис). Длина шага в любом направлении равна 1.

Путешествие по такому пути обычно является прекрасным способом посмотреть окрестности, однако в наше время постоянной спешки ни у кого нет времени на это. Поэтому кладоискатели хотят идти напрямую в точку, где зарыт клад. Например, вместо того, чтобы проходить три шага на север, один шаг на восток, один шаг на север, три шага на восток, два шага на юг и один шаг на запад, можно пройти напрямую, использовав около 3.6 шага (см. рис).


 

Вам необходимо написать программу, которая по указаниям пиратов определяет точку, где зарыт клад.

Входные данные

Первая строка входного файла содержит число N – число указаний (1≤N≤40). Последующие N строк содержат сами указания – номер направления (целое число от 1 до 8) и количество шагов (целое число от 1 до 1000). Числа разделены пробелами.

Выходные данные

В выходной файл выведите координаты X и Y точки (два вещественных числа, разделённые пробелом), где зарыт клад, считая, что ось Ox направлена на восток, а ось Oy – на север. В начале кладоискатель должен стоять в начале координат. Координаты необходимо вывести с погрешностью не более 10-3.

Примеры
Входные данные
6
1 3
3 1
1 1
3 3
5 2
7 1
Выходные данные
3.000 2.000
Входные данные
1
8 10
Выходные данные
-7.071 7.071
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

Пользователь просматривает таблицу в Internet Explorer и пользуется для прокрутки изображения колесиком на мышке. При этом все изображение сдвигается вверх или вниз на T пикселов. Пользователю очень не нравится, когда курсор мыши оказывается на горизонтальных линиях, разделяющих строки таблицы. Поэтому он хочет выбрать такое положение для курсора мыши на экране, чтобы в процессе прокрутки до конца таблицы курсор как можно меньшее число раз пересекался с линиями таблицы.

При этом если в каком-то положении курсор оказывается на двух линиях таблицы, то это считается за два пересечения курсора с линиями таблицы. Если какую-то линию курсор мыши пересекает в двух положениях (то есть, например, высота курсора 10 пикселей, а при прокрутке таблица сдвигается на 7 пикселей, тогда курсор мыши может оказываться на одной линии в двух состояниях прокрутки), то это также считается за два пересечения.

Экран монитора имеет разрешение по вертикали U пикселей. Координаты введены так, что самые верхние точки экрана имеют координату 0, а нижние — координату U–1.

Курсор мыши имеет высоту H пикселов. Расположением курсора считается самая верхняя точка курсора. Таким образом, если мы говорим, что он расположен, например, в точке с координатами 0 на экране, то его изображение расположено в точках с координатами от 0 до H–1. Курсор мыши всегда целиком помещается на экране, то есть допустимыми координатами для его расположения являются координаты от 0 до UH.>

Таблица, которую просматривает пользователь, имеет высоту L пикселов и состоит из N­–1 строки, и, следовательно, в ней N горизонтальных линий, которые имеют координаты X1, X2, …, XN. При этом 0=X1<X2<X3<…<XN=L–1.

В начальный момент времени таблица расположена так, что линия, имеющая координату 0 в таблице отображается в 0-й строке пикселов монитора. Далее при прокрутке таблица каждый раз сдвигается на T пикселов (то есть в 0-й строке монитора оказывается строка пикселов, имеющая в таблице координату T, координату 2T и т.д.). Так происходит до тех пор, пока на экране не окажется нижняя линия таблицы (которая имеет координату XN). После этого дальнейшая прокрутка не происходит (если изначально XN<U, то прокрутка вообще не происходит).

Входные данные

Во входном файле задано сначала разрешение монитора по вертикали U, затем высота курсора мыши H, затем шаг прокрутки T. Далее задана высота таблицы L. Далее задано количество разделительных линий в таблице N, и координаты X1, X2,…,XN, где расположены эти линии относительно начала таблицы.

Ограничения

  • 10U512
  • 1HU
  • 1TU
  • 2N200000
  • 0=X1<X2<…<XN=L–1109.
Выходные данные

В выходной файл выведите сначала координату, в которой нужно расположить курсор мыши, а затем количество пересечений курсора мыши с линиями таблицы. В случае, если существует несколько начальных положений курсора мыши, выведите любое из них.

Примеры
Входные данные
10 3 10 10
4
0 2 6 9
Выходные данные
3 0
Входные данные
10 3 10 20
14
0 1 2 3 4 5 6 7 8 9 10 12 16 19
Выходные данные
3 3
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

Будем говорить, что для наблюдателя лес является дремучим, если из своего текущего положения наблюдатель видит только деревья. Вам дана карта леса и координаты точки, в которой находится наблюдатель. Требуется определить, кажется ли лес дремучим данному наблюдателю.

На карте леса все деревья изображаются кругами. При этом в лесу бывают сросшиеся деревья (изображения таких деревьев на карте пересекаются), также одно дерево может находиться внутри другого. Точка, в которой стоит наблюдатель, не лежит внутри или на границе ни одного из деревьев.

Входные данные

Во входном файле содержится сначала целое число N — количество деревьев (1N50000). Затем идут два числа, задающих координаты наблюдателя. Затем идет N троек чисел, задающих деревья. Первые два числа задают координаты центра, а третье — радиус. Все координаты задаются точно, и выражаются вещественными числами не более чем с 2 знаками после десятичной точки, по модулю не превосходящими 100000.

Выходные данные

В первой строке выходного файла должно содержаться сообщение YES, если лес является дремучим, и NO иначе. Во втором случае вторая строка выходного файла должна содержать координаты точки, глядя в направлении которой наблюдатель не видит деревьев (то есть луч, вдоль которого смотрит наблюдатель не проходит внутри деревьев и не касается ни одного из деревьев). Координаты нужно вывести не менее, чем с 3 знаками после десятичной точки. Координаты не должны превышать 300000. Расстояние между выданной точкой и наблюдателем должно быть не меньше 1.

Примеры
Входные данные
4
1 1
7 7 6
-4 6 5
6 -4 5
-5 -5 6
Выходные данные
YES
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

В пространстве с прямоугольной системой координат находятся два куба. Про них известно следующее:

  • сторона каждого куба равна 2,
  • центр (т.е. центр симметрии) каждого куба совпадает с началом данной системы координат,
  • координаты вершин >первого куба A1A2A3A4A5A6A7A8 следующие: A1(1, 1, 1), A2(1, –1, 1), A3(–1, –1, 1), A4(–1, 1, 1), A5(1, 1, –1), A6(1, –1, –1), A7(–1, –1, –1), A8(–1, 1, –1),
  • вершины второго куба B1B2B3B4B5B6B7B8 пронумерованы так, что путем поворота кубы можно совместить, и при этом совместятся соответствующие их вершины (A1 и B1, A2 и B2, … , A8 и B8)
  • координаты вершин второго куба даны во входном файле.

Требуется найти объем пересечения (т.е. общей части) этих кубов.

Входные данные

Во входном файле записаны 8 троек действительных чисел – координаты вершин второго куба B1B2B3B4B5B6B7B8.

Выходные данные

В выходной файл выведите одно число – искомый объем пересечения кубов. Ответ не должен отличаться от верного более чем на 0.00001.

Примеры
Входные данные
1.0000000000 -1.0000000000 1.0000000000 
1.0000000000 -1.0000000000 -1.0000000000 
-1.0000000000 -1.0000000000 -1.0000000000 
-1.0000000000 -1.0000000000 1.0000000000 
1.0000000000 1.0000000000 1.0000000000 
1.0000000000 1.0000000000 -1.0000000000 
-1.0000000000 1.0000000000 -1.0000000000 
-1.0000000000 1.0000000000 1.0000000000 
Выходные данные
8.00000000000000000000
Входные данные
1.4142135623730950488016887242097 0 1
0 -1.4142135623730950488016887242097 1
-1.4142135623730950488016887242097 0 1
0 1.4142135623730950488016887242097 1
1.4142135623730950488016887242097 0 -1
0 -1.4142135623730950488016887242097 -1
-1.4142135623730950488016887242097 0 -1
0 1.4142135623730950488016887242097 -1
Выходные данные
6.62741699796952078000

Страница: 1 2 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест