Темы --> Информатика --> Алгоритмы --> Динамическое программирование --> Динамическое программирование в играх
---> 2 задач <---
Страница: 1 Отображать по:

Поле для игры с шашками – длинная горизонтальная полоска, размеченная на клетки. Клетки пронумерованы от 1 до N (2 < N 10000). На поле стоят две шашки. Позиция каждой из шашек определяется номером клетки, в которой она стоит.

Играют двое. Каждый игрок при своем ходе должен переместить любую шашку на одну, две или три клетки в сторону клетки 1 (сделать 1, 2 или 3 шага). Перепрыгивать через стоящую впереди шашку нельзя, но можно сдваивать шашки. На сдваивание шашек   тратится два шага из трех доступных игроку (то есть сдваивать можно либо шашки, стоящие  вплотную друг к другу, либо шашки, между которыми есть только одна пустая клетка). Если произошло сдваивание – ход передается другому игроку, который делает ход  одной шашкой , оставив другую на месте.

Выигрывает тот, кто сдвоит шашку на клетке с номером 1.

Требуется написать программу, реализующую алгоритм, обеспечивающий победу игроку, начинающему игру.

Входные данные

В первой строке содержится число K (0 < K 10) – количество начальных позиций. В последующих K строках содержится по два целых числа от 3 до 10000, разделенных пробелом – номера начальных позиций шашек на игровом поле.

Выходные данные

Выводится K строчек – ответ на каждую начальную позицию.

Если при заданной начальной позиции шашек в игре не достигается выигрыш (при правильной игре противника) выводится слово NO.

Если выигрыш достижим, то выводится первый ход начинающего игру, который приводит к его выигрышу независимо от того, как играет соперник. Ход описывается парой чисел  i, j через пробел, означающих, что выигрышный ход игрока – это перемещение шашки из клетки с номером i в клетку с номером  j. Например, «4 3» означает, что игрок двигает шашку, стоящую в клетке 4, на одну клетку в сторону клетки 1.

Примечание
Ответ на тест из примера:
NO
11 10
12 11
NO
15 12
12 10
Примеры
Входные данные
6
3 10
3 11
4 12
5 8
9 15
3 12
Выходные данные
YES
NO
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

Сегодня на уроке математики Петя и Вася изучали понятие арифметической прогрессии. Арифметической прогрессией с разностью d называется последовательность чисел a1, a2, …, ak, в которой разность между любыми двумя последовательными числами равна d. Например, последовательность 2, 5, 8, 11 является арифметической прогрессией с разностью 3.

После урока Петя и Вася придумали новую игру с числами. Игра проходит следующим образом.

В корзине находятся n фишек, на которых написаны различные целые числа a1, a2, …, an. По ходу игры игроки выкладывают фишки из корзины на стол. Петя и Вася делают ходы по очереди, первым ходит Петя. Ход состоит в том, что игрок берет одну фишку из корзины и выкладывает ее на стол. Игрок может сам решить, какую фишку взять. После этого он должен назвать целое число d ≥ 2 такое, что все числа на выбранных к данному моменту фишках являются членами некоторой арифметической прогрессии с разностью d, не обязательно последовательными. Например, если на столе выложены фишки с числами 2, 8 и 11, то можно назвать число 3, поскольку эти числа являются членами приведенной в начале условия арифметической прогрессии с разностью 3.

Игрок проигрывает, если он не может сделать ход из-за отсутствия фишек в корзине или из-за того, что добавление любой фишки из корзины на стол приводит к тому, что он не сможет подобрать соответствующее число d.

Например, если в корзине имеются числа 2, 3, 5 и 7, то Петя может выиграть. Для этого ему необходимо первым ходом выложить на стол число 3. После первого хода у него много вариантов назвать число d, например он может назвать d = 3. Теперь у Васи два варианта хода.

  1. Вася может вторым ходом выложить фишку с числом 5 и назвать d = 2. Тогда Петя выкладывает фишку с числом 7, называя d = 2. На столе оказываются фишки с числами 3, 5 и 7, а в корзине осталась только фишка с числом 2. Вася не может ее выложить, поскольку после этого он не сможет назвать корректное число d. В этом случае Вася проигрывает.
  2. Вася может вторым ходом выложить фишку с числом 7 и также назвать, например, d = 2. Тогда Петя выкладывает фишку с числом 5, называя также d = 2. Вася снова попадает в ситуацию, когда на столе оказываются фишки с числами 3, 5 и 7, а в корзине осталась только фишка с числом 2, и он также проигрывает.

Заметим, что любой другой первый ход Пети приводит к его проигрышу. Если он выкладывает число 2, то Вася отвечает числом 7, и Петя не может выложить ни одной фишки. Если Петя выкладывает фишку с числом 5 или 7, то Вася выкладывает фишку с числом 2, и у Пети также нет допустимого хода.

Требуется написать программу, которая по заданному количеству фишек n и числам на фишках a1, a2, …, an определяет, сможет ли Петя выиграть вне зависимости от действий Васи, и находит все возможные первые ходы Пети, ведущие к выигрышу.

Входные данные

Первая строка входного файла содержит целое число n (1 ≤ n ≤ 200).

Вторая строка содержит n различных целых чисел a1, a2, …, an (для всех i от 1 до n выполняется неравенство 1  ai  105). Соседние числа разделены ровно одним пробелом.

Выходные данные

Первая строка выходного файла должна содержать число k — количество различных первых ходов, которые может сделать Петя, чтобы выиграть. Если Вася может выиграть вне зависимости от действий Пети, строка должна содержать цифру 0.

Во второй строке должно содержаться k различных целых чисел — все выигрышные числа. Будем называть число выигрышным, если, выложив в качестве первого хода фишку, содержащую это число, Петя может выиграть вне зависимости от действий Васи. Соседние числа в строке должны быть разделены ровно одним пробелом.

Примечание

Первый пример рассматривается в тексте условия этой задачи.

Во втором примере, какую бы фишку не выложил Петя первым ходом, Вася в ответ выкладывает другую фишку, и Петя не может сделать ход из-за отсутствия фишек в корзине.

Примеры
Входные данные
4
2 3 5 7
Выходные данные
1
3
Входные данные
2
2 4
Выходные данные
0

Страница: 1 Отображать по:
Выбрано
:
Отменить
|
Добавить в контест