---> 2 задач <---
Страница: 1 Отображать по:
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Ассоциация Тапкодер организует Всемирное парное соревнование сильнейших программистов. К участию в соревновании допущены первые 2k зарегистрировавшихся участников, которым присвоены номера от 1 до 2k.

Соревнование будет проходить по олимпийской системе. В первом туре первый участник встречается со вторым, третий с четвертым и так далее. В каждой паре победителем становится участник, первым решивший предложенную задачу, при этом ничьих не бывает. Все победители очередного тура и только они являются участниками следующего тура. В каждом туре пары составляются из участников в порядке возрастания присвоенных им номеров. Соревнование продолжается до тех пор, пока не останется один победитель.

Организаторам стало известно, что некоторые пары участников заранее договорились о результате встречи между собой, если такая встреча состоится. Для всех остальных встреч, кроме n договорных, возможен любой исход.

Некоторые m участников соревнования представили свои резюме в ассоциацию Тапкодер с целью поступления на работу. Организаторов интересует, до какого тура может дойти каждый из претендентов при наиболее благоприятном для него стечении обстоятельств. При этом для каждого участника в отдельности считается, что все недоговорные встречи, в том числе те, в которых он не участвует, закончатся так, как ему выгодно, а все состоявшиеся договорные встречи закончатся в соответствии с имеющимися договоренностями.

Требуется написать программу, которая для каждого из претендентов определяет максимальный номер тура, в котором он может участвовать.

Входные данные

В первой строке заданы три целых числа k (1 ≤ k ≤ 60), n (0 ≤ n ≤ 100 000) и m (1 ≤ m ≤ 100 000). В следующих n строках описаны n пар участников, которые договорились между собой о том, что первый из двух участников пары выиграет встречу, если она состоится. Гарантируется, что каждая пара участников присутствует во входных данных не более одного раза, при этом, если задана пара x y, то пары y x быть не может, кроме того, x y. В последней строке перечислены номера участников, желающих работать в Тапкодере, в порядке возрастания их номеров. Все номера претендентов на работу различны.

Выходные данные

Выходные данные должны содержать m целых чисел — максимальные номера туров, до которых могут дойти соответствующие претенденты на работу. Туры нумеруются от 1 до k.

Комментарии к примерам тестов.

1. У каждого из участников есть возможность выйти в финал, так как договорных матчей нет.

2. Если четвертый участник выиграет у третьего, то договорная встреча первого и третьего не состоится, что благоприятно для первого.

3. Первому участнику благоприятно во втором туре играть с третьим, а не с четвертым, в свою очередь, четвертый может выиграть у третьего и также выйти в финал.

Система оценки

Тесты к этой задаче состоят из четырех групп, баллы начисляются только при прохождении всех тестов группы и всех тестов предыдущих групп.

0. Тесты 1–10. k <= 5. Эта группа оценивается в 30 баллов.

1. Тесты 11–14. k <= 20. Эта группа оценивается в 20 баллов.

2. Тесты 15–18. k <= 30. Эта группа оценивается в 20 баллов.

3. Тесты 19–23. Дополнительные ограничения отсутствуют. Эта группа оценивается в 30 баллов.

Примеры
Входные данные
2 0 3
1 3 4
Выходные данные
2 2 2
Входные данные
3 1 1
3 1
1
Выходные данные
3
Входные данные
3 3 4
1 2
1 3
4 1
1 2 3 4
Выходные данные
3 1 2 3

Во время лыжных соревнований \(N\) спортсменов стартуют с интервалом в 1 минуту. Скорость каждого лыжника на дистанции постоянна: \(i\)-й лыжник преодолевает 1 км за \(w_i\) минут. Длина трассы равна \(L\) км. Считается, что \(i\)-й лыжник обогнал \(j\)-го (совершил обгон), если он стартовал позже \(j\)-го, а пришёл к финишу раньше него. Подсчитайте суммарное число совершённых во время гонки обгонов.

Входные данные

Первая строка входного файла содержит два целых числа \(N\) и \(L\). Во второй строке через пробел расположены \(N\) целых чисел \(w_i\).

Выходные данные

Выведите единственное число - суммарное количество обгонов.

Примечания

Во всех тестах \(1 \le L \le 10^9\), \(1 \le w_i \le 10^9\) при \(i = 1, 2, \dots, N\). Тесты состоят из трёх групп.

  1. Тесты 1 и 2 из условия, оцениваются в 0 баллов.
  2. В тестах этой группы \(1 \le N \le 10\,000\), эти тесты оцениваются в 50 баллов, при этом баллы начисляются только при прохождении всех тестов группы.
  3. Off-line группа, \(1 \le N \le 500\,000\). При этом баллы за тесты этой группы ставятся только тогда, когда программа проходит все тесты предыдущей группы. Если программа не проходит хотя бы один из тестов группы 1, то баллы за тесты группы 2 не ставятся. Тесты этой группы оцениваются независимо друг от друга.
Примеры
Входные данные
2 1
20 19
Выходные данные
0
Входные данные
5 3
3 6 2 4 1
Выходные данные
7

Страница: 1 Отображать по:
Выбрано
:
Отменить
|
Добавить в контест