На одном из московских вокзалов билеты продают \(N\) касс. Каждая касса работает без перерыва определенный промежуток времени по фиксированному расписанию (одному и тому же каждый день). Требуется определить, на протяжении какого времени в течение суток работают все кассы одновременно.
Сначала вводится одно целое число \(N\) (0 < \(N\) ≤ 1000).
В каждой из следующих \(N\) строк через пробел расположены 4 целых числа, первые два из которых обозначают время открытия кассы в часах и минутах (часы — целое число от 0 до 23, минуты — целое число от 0 до 59), оставшиеся два — время закрытия в том же формате. Числа разделены пробелами.
Время открытия означает, что в соответствующую ему минуту касса уже работает, а время закрытия — что в соответствующую минуту касса уже не работает. Например, касса, открытая с 10 ч. 30 мин. до 18 ч. 30 мин., ежесуточно работает 480 минут.
Если время открытия совпадает с временем закрытия, то касса работает круглосуточно. Если первое время больше второго, то касса начинает работу до полуночи, а заканчивает — на следующий день.
Требуется вывести одно число — суммарное время за сутки (в минутах), на протяжении которого работают все N касс.
1) Первая касса работает с часу до 23 часов, вторая – круглосуточно, третья – с 22 часов до 2 часов ночи следующего дня. Таким образом, все три кассы одновременно работают с 22 до 23 часов и с часу до двух часов, то есть 120 минут.
2) Первая касса работает до 14 часов, а вторая начинает работать в 14 часов 15 минут, то есть одновременно кассы не работают.
3) Вместе кассы работают лишь одну минуту – с 14:00 до 14:01 (в 14:01 вторая касса уже не работает).
3 1 0 23 0 12 0 12 0 22 0 2 0
120
2 9 30 14 0 14 15 21 0
0
2 14 00 18 00 10 00 14 01
1
Парламент некоторой страны принял новый закон о праздничных днях. Согласно этому закону первые K дней года, а также 23 февраля (День олимпиады по информатике) и 8 марта объявляются праздничными, а все остальные праздники отменяются. При этом все выходные (суббота и воскресенье), попавшие на праздничные дни, переносятся на следующие за этими праздниками рабочие дни.
В зависимости от того, на какой день недели приходится 1 января, количество нерабочих дней, которые идут подряд, может меняться.
Требуется определить, какое наибольшее количество нерабочих дней может идти подряд.
На вход подается единственное число K (1≤K≤50).
Требуется вывести единственное число — наибольшее количество нерабочих дней, идущих подряд.
2
4
10
16