Темы --> Информатика --> Алгоритмы --> Жадный алгоритм
---> 17 задач <---
Источники --> Личные олимпиады --> Всероссийская олимпиада школьников
    Муниципальный этап(80 задач)
    Окружная олимпиада(18 задач)
    Региональный этап(109 задач)
    Заключительный этап(97 задач)
Страница: << 1 2 3 4 Отображать по:
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
256 megabytes

Длина автомобильной дороги составляет N километров. Часть дороги необходимо отремонтировать. При обследовании дорога была разбита на N участков длиной 1 километр, и для каждого участка было определено, нуждается ли он в ремонте или нет, после чего был составлен план дороги, на котором отмечены участки, нуждающиеся в ремонте.

Для ремонта дороги можно привлечь несколько компаний-подрядчиков. Каждая компания может отремонтировать только непрерывный фрагмент дороги. При этом из-за требований антимонопольного законодательства длина фрагмента дороги, который ремонтирует одна компания, не должна превышать L километров (даже если на фрагменте, который ремонтирует одна компания, есть не нуждающиеся в ремонте участки, общая длина данного фрагмента не должна превышать L километров).

Определите, какое наименьшее количество компаний-подрядчиков необходимо привлечь для ремонта дороги.

Входные данные

Первая строка входных данных содержит целое число L ( L >  0 ) — максимальную длину фрагмента дороги, который может отремонтировать одна компания. Во второй строке входных данных записано целое число N ( N >  0 ) — длина всей дороги. Следующие N строк содержат по одному числу, равному 0 или 1. Число 1 обозначает, что соответствующий участок дороги нуждается в ремонте, число 0 — что участок не требует ремонта.

Выходные данные

Программа должна вывести одно целое число — минимальное количество компаний-подрядчиков, которое необходимо привлечь для ремонта дороги.

Примечание

В тесте из примера первая компания может отремонтировать участок номер 3, вторая компания — участки с 5 по 7.

Ограничения и система оценивания

Решение, правильно работающее в случае, когда числа L и N не превосходят 10, будет оцениваться в 30 баллов.

Решение, правильно работающее в случае, когда числа L и N не превосходят 1000, будет оцениваться в 60 баллов.

Решение, правильно работающее в случае, когда числа L и N не превосходят 10 5 , будет оцениваться в 100 баллов.

Примеры
Входные данные
3
8
0
0
1
0
1
0
1
0
Выходные данные
2

В игре Cookie Clicker игрок зарабатывает печеньки (cookies), щёлкая мышкой по изображению большой печеньки. Тратя заработанные печеньки, игрок может покупать различные усовершенствования (ферму, фабрику и т. д.), которые также производят дополнительные печеньки.

Рассмотрим упрощённый вариант этой игры. Пусть игрок может сделать один щелчок мышкой в секунду, что приносит ему одну печеньку. Также в любой момент времени игрок может потратить C печенек на покупку фабрики (при этом у игрока должно быть не меньше C печенек, после покупки фабрики количество его печенек моментально уменьшается на C ). Каждая купленная фабрика увеличивает ежесекундное производство печенек на P штук (то есть если у игрока одна фабрика, то он получает 1  + P печенек в секунду, две фабрики — 1  +  2 P печенек, три фабрики — 1  +  3 P печенек и т. д.). Игрок может приобрести неограниченное число фабрик стоимостью C печенек каждая. Фабрика начинает производить дополнительные печеньки сразу же, например, если после какой-то секунды игры у игрока стало C печенек, то игрок может купить фабрику и уже на следующей секунде его производство печенек увеличится на P штук.

Оригинальная игра никогда не заканчивается, но мы будем считать, что целью игры является набрать хотя бы  N печенек. Определите минимальное время, за которое может быть достигнута цель игры.

Входные данные

Программа получает на вход три целых положительных числа, записанных в отдельных строках: С (стоимость фабрики), P (производительность одной фабрики) и N (необходимое количество печенек).

Выходные данные

Программа должна вывести одно целое число — минимальное время в секундах, за которое игрок может получить не менее N печенек.

Примечание

В первом тесте: через 50 секунд после начала игры у игрока будет 50 печенек, и он сможет купить фабрику. После этого он будет получать 4 печеньки в секунду, и на производство 100 печенек понадобится еще 25 секунд.

Во втором тесте: игрок сможет набрать 100 печенек за 100 секунд, при этом фабрику покупать нет смысла.

Ограничения и система оценивания

Решение, правильно работающее в случае, когда все входные числа не превосходят 1000, а для получения N печенек за минимальное время нужно приобрести не более одной фабрики, будет оцениваться в 30 баллов.

Решение, правильно работающее в случае, когда все входные числа не превосходят 1000, будет оцениваться в 70 баллов.

Решение, правильно работающее в случае, когда все входные числа не превосходят 10 9 , будет оцениваться в 100 баллов.

Примеры
Входные данные
50
3
100
Выходные данные
75
Входные данные
99
10
100
Выходные данные
100

Страница: << 1 2 3 4 Отображать по:
Выбрано
:
Отменить
|
Добавить в контест